精英家教网 > 高中数学 > 题目详情
8.已知圆锥的底面直径和母线长都是$2\sqrt{3}$.
(1)求该圆锥的外接球的表面积;
(2)正方体的一面在该圆锥的底面上,其余四个顶点在圆锥的母线上,求该正方体的棱长.

分析 (1)求出圆锥的高为3,由射影定理可得12=3•2R,求出R,即可求该圆锥的外接球的表面积;
(2)设正方体的棱长为2a,则利用轴截面可得$\frac{\sqrt{2}a}{\sqrt{3}}=\frac{3-2a}{3}$,即可得出结论.

解答 解:(1)设球的半径为R,则
∵圆锥的底面直径和母线长都是$2\sqrt{3}$.
∴圆锥的高为3,
由射影定理可得12=3•2R,∴R=2,
∴该圆锥的外接球的表面积S=4π•22=16π;
(2)设正方体的棱长为2a,
则利用轴截面可得$\frac{\sqrt{2}a}{\sqrt{3}}=\frac{3-2a}{3}$,
∴a=3$\sqrt{6}$-6.

点评 本题考查圆锥的外接球的表面积、正方体的棱长,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.直线$\sqrt{3}$x-y+a=0的倾斜角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a,b,c,∠B=60°且b=$\sqrt{3}$
(Ⅰ)若a=1,求∠A的大小和边c的长度;
(Ⅱ)求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z1=1+2i,z2=3-4i,$\frac{1}{z}$=$\frac{1}{z{\;}_{1}}$+$\frac{1}{z{\;}_{2}}$,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.sin480°的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正方体ABCD-A1B1C1D1中,E、F分别为棱AD,AB的中点.
(1)求证:EF∥平面CB1D1
(2)求CB1与平面CAA1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正方体ABCD-A1B1C1D1中,底面边长为2$\sqrt{2}$,BD与AC交于点O,
(1)求直线D1O与平面ABCD所成角.
(2)求点D到ACD1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x-1|.
(1)解关于x的不等式f(x)>2;
(2)若对任意x∈R,不等式f(x)+|x|>2|a|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D为AB的中点.
(1)求证:AC1∥平面B1CD;
(2)求二面角B-B1C-D的正弦值.

查看答案和解析>>

同步练习册答案