精英家教网 > 高中数学 > 题目详情
18.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D为AB的中点.
(1)求证:AC1∥平面B1CD;
(2)求二面角B-B1C-D的正弦值.

分析 (1)连接BC1交B1C于点E,E为BC1的中点,由为AB的中点,则AC1∥DE,又AC1?平面B1CD,DE?平面B1CD,AC1∥平面B1CD;
(2)AC=BC,D为AB的中点,CD⊥AB,平面ABC⊥平面ABB1A1,可知平面B1CD⊥平面B1BD,过点B作BH⊥B1D,垂足为H,则BH⊥平面B1CD,B1C⊥BE,B1C⊥EH,
∠BEH为二面角B-B1C-D的平面角,Rt△BHE中,BE=$\sqrt{2}$,BH=$\frac{B{B}_{1}•BD}{{B}_{1}D}$=$\frac{2}{\sqrt{3}}$,则sin∠BEH=$\frac{BH}{BE}$=$\frac{\sqrt{6}}{3}$.

解答 解:(1)证明:如图,连接BC1交B1C于点E,
则E为BC1的中点.
∵D为AB的中点,∴在△ABC1中,AC1∥DE,
又AC1?平面B1CD,DE?平面B1CD,
∴AC1∥平面B1CD
(2)∵AC=BC,D为AB的中点,
∴CD⊥AB,
又平面ABC⊥平面ABB1A1
∴CD⊥平面ABB1A1
∴平面B1CD⊥平面B1BD,
过点B作BH⊥B1D,垂足为H,则BH⊥平面B1CD,
连接EH,
∵B1C⊥BE,B1C⊥EH,
∴∠BEH为二面角B-B1C-D的平面角.
在Rt△BHE中,BE=$\sqrt{2}$,BH=$\frac{B{B}_{1}•BD}{{B}_{1}D}$=$\frac{2}{\sqrt{3}}$,
则sin∠BEH=$\frac{BH}{BE}$=$\frac{\sqrt{6}}{3}$.
即二面角B-B1C-D的正弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查用空间向量求直线与平面的夹角,直线与平面平行的判定,用空间向量求平面间的夹角,考查空间想象能力,逻辑思维能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知圆锥的底面直径和母线长都是$2\sqrt{3}$.
(1)求该圆锥的外接球的表面积;
(2)正方体的一面在该圆锥的底面上,其余四个顶点在圆锥的母线上,求该正方体的棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设随机变量Z的分布列为若$E(Z)=\frac{15}{8}$,则x=$\frac{1}{8}$y=$\frac{3}{8}$
 Z 1 2 3
 P 0.5 x y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图在正方体中
(1)求异面直线BC1与CD1所成的角;
(2)求直线D1B与底面ABCD所成角的正弦值;
(3)求二面角D1-AC-D大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
(1)若$\frac{π}{2}<α<π$,sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方体,PD=CD=2,E、F分别是AB、PB的中点
(1)求证:EF⊥CD;
(2)求DB与平面DEF所成角的大小;
(3)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数a和b是区间[0,1]内任意两个数,则使b<a2的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.同时掷六个面分别标有数字1、2、3、4、5、6的质地均匀和大小相同的两枚正方形骰子,计算向上的点数之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=4sin($\frac{1}{2}$x+$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步练习册答案