精英家教网 > 高中数学 > 题目详情
14.设向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,$\overrightarrow a•(\overrightarrow a+\overrightarrow b)=0$,则$|2\overrightarrow a-\overrightarrow b|$=(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

分析 由已知求出$\overrightarrow{a}•\overrightarrow{b}$的值,进一步求得$|\overrightarrow{b}|$,求出$|2\overrightarrow{a}-\overrightarrow{b}{|}^{2}$得答案.

解答 解:由$\overrightarrow a•(\overrightarrow a+\overrightarrow b)=0$,得$|\overrightarrow{a}{|}^{2}+\overrightarrow{a}•\overrightarrow{b}=0$,则$\overrightarrow{a}•\overrightarrow{b}=-1$,
由$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,得$(\overrightarrow{a}+\overrightarrow{b})^{2}=|\overrightarrow{a}{|}^{2}+2\overrightarrow{a}•\overrightarrow{b}+|\overrightarrow{b}{|}^{2}=3$,
∴$1-2+|\overrightarrow{b}{|}^{2}=3$,得$|\overrightarrow{b}{|}^{2}=4$.
∴$|2\overrightarrow{a}-\overrightarrow{b}{|}^{2}=4|\overrightarrow{a}{|}^{2}-4\overrightarrow{a}•\overrightarrow{b}+|\overrightarrow{b}|$=4+4+4=12,
则$|2\overrightarrow a-\overrightarrow b|$=$2\sqrt{3}$.
故选:B.

点评 本题考查平面向量的数量积运算,考查了向量模的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{(a+3)x-5,x≤1}\\{\frac{2a}{x},x>1}\end{array}\right.$是(-∞,+∞)上的增函数,那么a的取值范围是[-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x>-1},下列关系式中成立的为(  )
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$f(x)={(\frac{1}{2})^{2{x^2}-3x+1}}$的增区间是$(-∞,\frac{3}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线$\sqrt{3}$x-y+a=0的倾斜角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(6,3)$,$\overrightarrow c=m\overrightarrow a+\overrightarrow b$(m∈R),且$\overrightarrow c$与$\overrightarrow a$的夹角等于$\overrightarrow c$与$\overrightarrow b$的夹角,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$与$\overrightarrow{a}-\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=cos127°cos50°+sin53°cos40°,b=$\frac{\sqrt{2}}{2}$(sin56°-cos56°),c=$\frac{1}{2}$(cos80°-2cos250°+1),则a、b、c的大小关系为(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正方体ABCD-A1B1C1D1中,E、F分别为棱AD,AB的中点.
(1)求证:EF∥平面CB1D1
(2)求CB1与平面CAA1C1所成角的正弦值.

查看答案和解析>>

同步练习册答案