精英家教网 > 高中数学 > 题目详情
2.函数$f(x)={(\frac{1}{2})^{2{x^2}-3x+1}}$的增区间是$(-∞,\frac{3}{4}]$.

分析 令t=2x2-3x+1,求出其单调性区间,则g(t)=($\frac{1}{2}$)t是单调递减,根据复合函数的单调性可得增区间.

解答 解:函数$f(x)={(\frac{1}{2})^{2{x^2}-3x+1}}$,
令t=2x2-3x+1,
则函数f(x)转化为g(t)=($\frac{1}{2}$)t是单调递减,
函数t=2x2-3x+1,
开口向上,对称轴x=$\frac{3}{4}$,
其单调性区间,单调增区间为:[$\frac{3}{4}$,+∞)单调减区间为(-∞,$\frac{3}{4}$];
根据复合函数的单调性“同增异减”可得函数f(x)的单调增区间为(-∞,$\frac{3}{4}$];
故答案为:$(-∞,\frac{3}{4}]$.

点评 本题考查了复合函数的单调性的求法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=asinx在点(0,0)处的切线方程为y=2x,则a=(  )
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知${(x+1)^n}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_n}{(x-1)^n}$,(其中n∈N*
(1)求a0及sn=a1+a2+…+an
(2)试比较sn与(n-2)•2n+2n2的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,∠ABC=90°,AB=2$\sqrt{3}$,BC=2,P为△ABC内一点,∠BPC=90°
(1)若PB=1,求PA;
(2)若∠APB=120°,设∠PBA=α,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线3x+4y+17=0与圆x2+y2-4x+4y-17=0相交于A,B,则|AB|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=ex(2-|x|)-1的零点个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,$\overrightarrow a•(\overrightarrow a+\overrightarrow b)=0$,则$|2\overrightarrow a-\overrightarrow b|$=(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设抛物线y2=8x的焦点为F,M是抛物线上一点,N(2,2),则|MF|+|MN|的取值范围是(  )
A.(0,4]B.[4,+∞)C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,曲线C由上半椭圆C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1、C2的公共点为A,B,其中C1的离心率为$\frac{\sqrt{3}}{2}$.
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.

查看答案和解析>>

同步练习册答案