精英家教网 > 高中数学 > 题目详情
我们可以利用数列{an}的递推公式an=
n,n为奇数时
a
n
2
,n为偶数时
(n∈N+)求出这个数列各项的值,使得这个数列中的每一项都是奇数.则a24+a25=
 
;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第
 
项.
分析:借助于递推公式知道奇数项的值为其项数,而偶数项的值由对应的值来决定.又通过前面的项发现项的值为5时,下角码是首项为5,公比为2的等比数列.即可求出第8个5在该数列中所占的位置.
解答:解:由题得:这个数列各项的值分别为1,1,3,1,5,3,7,1,9,5,11,3…
∴a24+a25=3+25=28.
又因为a5=5,a10=5,a20=5,a40=5…
即项的值为5时,下角码是首项为5,公比为2的等比数列.
所以第8个5是该数列的第5×28-1=640项.
故答案为:28,640.
点评:本题是对数列递推公式应用的考查.解题时要认真审题,仔细观察,注意寻找规律,避免不必要的错误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1-a
a-x
(a∈R)

(1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形;
(2)当x∈[a+1,a+2]时,求证:f(x)∈[-2,-
3
2
]

(3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
(i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围;
(ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).请按照要求完成下列各题,并将答案填在答题纸的指定位置上.
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD

(请填出全部答案)
A、B、
C、D、

(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列
(3)若将an,bn写成列向量形式,则存在矩阵A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,请回答下面问题:
①写出矩阵A=
-24
-57
-24
-57
;  ②若矩阵Bn=A+A2+A3+…+An,矩阵Cn=PBnQ,其中矩阵Cn只有一个元素,且该元素为Bn中所有元素的和,请写出满足要求的一组P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
Q=
1
1
; ③矩阵Cn中的唯一元素是
2n+2-4
2n+2-4

计算过程如下:

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知Sn是数列{an}的前n项和,2Sn=Sn-1-(
1
2
)n-1+2
(n≥2,n∈N*),且a1=
1
2

(1)求a2的值,并写出an和an+1的关系式;
(2)求数列{an}的通项公式及Sn的表达式;
(3)我们可以证明:若数列{bn}有上界(即存在常数A,使得bn<A对一切n∈N*恒成立)且单调递增;或数列{bn}有下界(即存在常数B,使得bn>B对一切n∈N*恒成立)且单调递减,则
lim
n→∞
bn
存在.直接利用上述结论,证明:
lim
n→∞
Sn
存在.

查看答案和解析>>

科目:高中数学 来源:上海市虹口区2012届高三上学期期末教学质量监控测试数学试题 题型:044

已知Sn是数列{an}的前n项和,(),且

(1)求a2的值,并写出an和an+1的关系式;

(2)求数列{an}的通项公式及Sn的表达式;

(3)我们可以证明:若数列{bn}有上界(即存在常数A,使得bn<A对一切n∈N*恒成立)且单调递增;或数列{bn}有下界(即存在常数B,使得bn>B对一切n∈N*恒成立)且单调递减,则存在.直接利用上述结论,证明:存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知Sn是数列{an}的前n项和,数学公式(n≥2,n∈N*),且数学公式
(1)求a2的值,并写出an和an+1的关系式;
(2)求数列{an}的通项公式及Sn的表达式;
(3)我们可以证明:若数列{bn}有上界(即存在常数A,使得bn<A对一切n∈N*恒成立)且单调递增;或数列{bn}有下界(即存在常数B,使得bn>B对一切n∈N*恒成立)且单调递减,则数学公式存在.直接利用上述结论,证明:数学公式存在.

查看答案和解析>>

同步练习册答案