精英家教网 > 高中数学 > 题目详情

设函数f(x)=Asin(ωx+)(其中A>0,ω>0,-π<≤π)在x=处取得最大值2,其图象与x轴的相邻两个交点的距离为.
(1)求f(x)的解析式;
(2)求函数g(x)=的值域.

(1) f(x)=2sin(2x+)  (2) [1, ]∪(,]

解析解:(1)由题设条件知f(x)的周期T=π,
=π,解得ω=2.
因为f(x)在x=处取得最大值2,所以A=2,
从而sin(2×+)=1,
所以2×+=+2kπ,k∈Z.
又由-π<≤π,得=.
故f(x)的解析式为f(x)=2sin(2x+).
(2)g(x)=
=
=
=cos2x+1(cos2x≠).
因为cos2x∈[0,1],且cos2x≠,
故g(x)的值域为[1,]∪(,].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最大值,并写出取最大值时的取值集合;
(2)已知中,角的对边分别为求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量为常数且),函数上的最大值为
(1)求实数的值;
(2)把函数的图象向右平移个单位,可得函数的图象,若上为增函数,求取最大值时的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数求函数的最小正周期T及值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)当时,求函数的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设平面向量a=(cosx,sinx),b=(cosx+2,sinx),x∈R.
(1)若x∈(0,),证明:a和b不平行;
(2)若c=(0,1),求函数f(x)=a·(b-2c)的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某兴趣小组要测量电视塔AE的高度H(单位:m)如图所示,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.

(1)该小组已测得一组α、β的值,算出了tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125m,试问d为多少时,α-β最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,且θ∈(0,2π).
(1)求的值;
(2)求m的值;
(3)求方程的两根及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin-2cos2x∈R(其中ω>0).
(1)求函数f(x)的值域;
(2)若函数yf(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数yf(x)的单调增区间.

查看答案和解析>>

同步练习册答案