精英家教网 > 高中数学 > 题目详情
如图,BC为圆O的直径,D为圆周上异于B、C的一点,AB垂直于圆O所在的平面,BE⊥AC于点E,BF⊥AD于点F.
(Ⅰ)求证:BF⊥平面ACD;
(Ⅱ)若AB=BC=2,∠CBD=45°,求四面体BDEF的体积.
考点:直线与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:对第(Ⅰ)问,由于BF⊥AD,要证BF⊥平面ACD,只需证BF⊥CD,故只需CD⊥平面ABD,由于CD⊥BD,只需CD⊥AB,由AB⊥平面BDC;
对第(Ⅱ)问,四面体BDEF即三棱锥E-BDF,由CD⊥平面ABD及E为AC的中点知,三棱锥E-BDF的高等于
1
2
CD
,在Rt△ABD中,根据BF⊥AD,设法求出S△BDF,即得四面体BDEF的体积.
解答: 解:(Ⅰ)证明:∵BC为圆O的直径,∴CD⊥BD,
∵AB⊥圆0所在的平面BCD,且CD?平面BCD,∴AB⊥CD,
又AB∩BD=B,∴CD⊥平面ABD,
∵BF?平面ABD,∴CD⊥BF,
又∵BF⊥AD,且AD∩CD=D,
∴BF⊥平面ACD.
(Ⅱ)∵AB=BC=2,∠CBD=45°,∴BD=CD=
2

∵BE⊥AC,∴E为AC的中点,
又由(Ⅰ)知,CD⊥平面ABD,
∴E到平面BDF的距离d=
1
2
CD
=
2
2

在Rt△ABD中,有AD=
AB2+BD2
=
6

∵BF⊥AD,由射影定理得BD2=DF•AD,
则DF=
BD2
AD
=
6
3
,从而BF=
BD2-DF2
=
2
3
3

S△BDF=
1
2
DF•BF=
2
3

∴四面体BDEF的体积=VE-BDF=
1
3
S△BDF•d
=
1
3
×
2
3
×
2
2
=
1
9
点评:1.本题考查了线面垂直的定义与性质与判定,关键是掌握线面垂直与线线垂直的相互转化:“线线垂直”可由定义来实现,“线面垂直”可由判定定理来实现.
2.考查了三棱锥体积的计算,求解时,应寻找适当的底面与高,使面积和高便于求解,面积可根据三角形形状求解,高可转化为距离的计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,平行四边形ABCD的对角线AC∩BD=0,且AB=BC=BD=6,BM=MC,将四边形ABCD沿对角线AC折起,得到三棱锥B-ACD,且DM=3
2

(Ⅰ)求证:平面ABC⊥平面MDO;
(Ⅱ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

复平面内关于原点对称的两点对应的复数为z1,z2,且满足3z1+(z2-2)i=2z2-(1+z1)i,求z1,z2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定两个命题,P:|-a+2|<2;Q:关于x的方程x2-x+a=0有实数根.如果P∨Q为真命题,P∧Q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当a∈R且a≠1时,函数f(x)=(a-1)x2-ax-m的图象和x轴总有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个平面α,β,γ,α⊥γ,β⊥γ,α∩β=a,求证:a⊥γ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)求{an}的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

“∵y=x3是奇函数∴y=x3的图象关于原点对称.”以上推理的大前提是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面凸四边形ABCD的边长均大于2,且∠DAB=45°,点P在四边形ABCD内运动,且在AB、AD上的射影分别为M、N,若PA=2,则△PMN面积的最大值为
 

查看答案和解析>>

同步练习册答案