精英家教网 > 高中数学 > 题目详情
13.若x、y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y-2≤0}\\{2x-y-2≥0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.-4B.2C.$\frac{8}{3}$D.4

分析 作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移至A,可得z的最大值.

解答 解:作出x、y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y-2≤0}\\{2x-y-2≥0}\end{array}\right.$,表示的平面区域,
得到如图的△ABC及其内部,
其中$\left\{\begin{array}{l}{x+y-2=0}\\{2x-y-2=0}\end{array}\right.$解得A($\frac{4}{3}$,$\frac{2}{3}$),
设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,
当l经过点A时,目标函数z达到最大值,
∴z最大值=F($\frac{4}{3}$,$\frac{2}{3}$)=$\frac{8}{3}$,
故选:C.

点评 本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为F(-2$\sqrt{5}$,0),且过点D(6,0).
(1)求该椭圆的标准方程;
(2)已知点A(4,2),且P是椭圆上的动点,求线段PA的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令${b_n}={a_n}•{3^n}$(n∈N*),求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=sin($\frac{k}{2}$x+$\frac{π}{3}$)(k>0)的最小正周期不大于2,则正整数k的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知中心在原点椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,其中一个顶点是(0,-$\sqrt{3}$)
(1)求椭圆C的方程;
(2)若过点P(-2,1)的直线l与椭圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若sin(α+$\frac{π}{6}$)=3sin($\frac{π}{2}$-α),则cos2α=-$\frac{11}{14}$,tan2α=-$\frac{5\sqrt{3}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A(0,1),B、C为椭圆x2+my2=m(m>1)上的三个不同点,AB⊥AC.
(Ⅰ)当椭圆长轴长为4时,求椭圆的离心率e;
(Ⅱ)求△ABC面积的最大值f(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是(  )
A.$\frac{1}{2π}$B.$\frac{\sqrt{2}}{2π}$C.$\frac{\sqrt{3}}{2π}$D.$\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正项数列{an}满足an+1-a1=(a2-1)Sn(n∈N*),其中Sn 为数列{an}的前n项和,a2=t
(1)求数列{an}的通项公式;
(2)求证:${S_n}≤\frac{{n({a_1}+{a_n})}}{2}$,并指出等号成立的条件.

查看答案和解析>>

同步练习册答案