精英家教网 > 高中数学 > 题目详情
(2010•宝山区模拟)已知f(x)是定义域为R的偶函数,满足f(x+2)=f(x),如果f(x)在[1,2]上增函数,则下列命题正确的是(  )
分析:由题设条件可以得出,函数是一个偶函数,也是一个周期函数,又知其在[1,2]上增函数,考查四个选项,分别研究函数的单调性,对称性及最值,比较大小等,故可以先对函数的性质作综合研究,由于函数具有周期性,故可以先研究一个周期上的性质,再推理出整个定义域上的性质,然后再对四个选项的正误作出判断
解答:解:由题意f(x)是定义域为R的偶函数,f(x)在[1,2]上增函数
∴f(x)在[-2,-1]上是减函数,
又f(x+2)=f(x),
∴函数是一个周期是2的周期函数
故可得出f(x)在[0,1]上是减函数,f(x)在[-1,0]上是增函数,再由函数是偶函数,得f(x)在[0,1]上的图象与函数在[-1,0]上图象关于Y轴对称,故函数在[0,2]上的图象也关于直线x=1对称,再由周期性知,每一个x=n,n∈Z,这样的直线都是函数的对称轴
考察四个选项,B选项是正确的
故选B
点评:本题考查函数的周期性,奇偶性,单调性,是一个综合性较强的题,解题的关键是综合利用所给的性质对函数图象的特征作出判断,本题考查了推理判断的能力,数形结合的思想
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•宝山区模拟)函数f(x)=-x2+3x-1,x∈[3,5]的最小值为
-11
-11

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)设m.n∈R,给出下列命题:
(1)m<n<0⇒m2<n2(2)ma2<na2⇒m<n(3)
m
n
<a,⇒ma<na
,(4)m<n<0,⇒
n
m
<1

其中正确的命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,设椭圆C上的点A(1,
3
2
)到F1、F2两点距离之和等于4.
(1)写出椭圆C的方程;
(2)设点K是椭圆上的动点,求 线段F1K的中点的轨迹方程;
(3)求定点P(m,0)(m>0)到椭圆C上点的距离的最小值d(m),并求当最小值为1时m值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)如果直线x+y+a=0与圆x2+(y+
2
)2=1
有公共点,则实数a的取值范围是
[0,2
2
]
[0,2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)已知数列{an}满足a1=1,a2=-2,an+2=-
1an
(n∈N*)
,则该数列前26项的和为
-10
-10

查看答案和解析>>

同步练习册答案