精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)的最小正周期为π,
(1)求ω的值与函数f(x)的图象的对称轴方程;
(2)若角A为△ABC的最小内角,求f(A)的取值范围.

分析 (1)由三角函数中的恒等变换应用化简可得f(x)=2sin(ωx+$\frac{π}{3}$),利用周期公式可求ω,令2x+$\frac{π}{3}$=k$π+\frac{π}{2}$,则x=$\frac{kπ}{2}+\frac{π}{12}$,即求得函数f(x)的图象的对称轴方程.
(2)由题意可得0<A$≤\frac{π}{3}$,可得2A$+\frac{π}{3}$$∈(\frac{π}{3},π]$,求得2sin(2A+$\frac{π}{3}$)∈[0,2],即可得解.

解答 解:(1)由题意可得f(x)=2sin(ωx+$\frac{π}{3}$),
∵$\frac{2π}{ω}=π$,可得ω=2.
即f(x)=2sin(2x+$\frac{π}{3}$),
令2x+$\frac{π}{3}$=k$π+\frac{π}{2}$,则x=$\frac{kπ}{2}+\frac{π}{12}$,即函数f(x)的图象的对称轴方程为:x=$\frac{kπ}{2}+\frac{π}{12}$(k∈Z)…6分
(2)由题意可得0<A$≤\frac{π}{3}$,
∴2A$+\frac{π}{3}$$∈(\frac{π}{3},π]$,
∴sin(2A+$\frac{π}{3}$)∈[0,1],
∴2sin(2A+$\frac{π}{3}$)∈[0,2],即f(A)的取值范围为[0,2]…12分

点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.点P(x0,y0)是曲线C:x=e-|x|(x≠0)上的一个动点,曲线C在点P处的切线与x轴、y轴分别交于A,B两点,点O是坐标原点,则△AOB面积的最大值为(  )
A.$\frac{2}{e}$B.$\frac{4}{e}$C.$\sqrt{e}$D.2$\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线有方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),其上一个焦点为F(c,0),如果顶点B(0,b)使得BF垂直于该双曲线的一条渐近线,则此双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)关于x的不等式mx2-(m+3)x-1<0的解集为R,求实数m的取值范围;
(Ⅱ)关于x的不等式x2+ax+b>0的解集为{x|x>2或x<1},求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(2x-$\frac{π}{3}$)+cos(2x-$\frac{π}{6}$)+2cos2x-1
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若α∈[$\frac{π}{4}$,$\frac{π}{2}$]且f(α)=$\frac{3\sqrt{2}}{5}$,求cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知O(0,0),M(-1,-2),N(3,n)均在直线l上,
(1)求n的值及直线l的斜率;
(2)若点P为直线l上一个动点,A(1,5),B(7,1),求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:$sin({π+α})+tan({-π-α})sin({\frac{3π}{2}-α})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列$\frac{1}{1×4},\frac{1}{4×7},\frac{1}{7×10},…,\frac{1}{(3n-2)(3n+1)},…$的前10项和为(  )
A.$\frac{27}{28}$B.$\frac{9}{28}$C.$\frac{30}{31}$D.$\frac{10}{31}$

查看答案和解析>>

同步练习册答案