| A. | $\frac{27}{28}$ | B. | $\frac{9}{28}$ | C. | $\frac{30}{31}$ | D. | $\frac{10}{31}$ |
分析 设an=$\frac{1}{(3n-2)(3n+1)}$,利用裂项法进行求和即可.
解答 解:设an=$\frac{1}{(3n-2)(3n+1)}$,
则an=$\frac{1}{3}$×$\frac{3}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),
则数列的前n项和Sn=$\frac{1}{3}$(1-$\frac{1}{4}+\frac{1}{4}-\frac{1}{7}$+…+$\frac{1}{3n-2}$-$\frac{1}{3n+1}$)=$\frac{1}{3}$(1-$\frac{1}{3n+1}$),
则S10=$\frac{1}{3}$(1-$\frac{1}{30+1}$)=$\frac{1}{3}$(1-$\frac{1}{31}$)=$\frac{1}{3}×\frac{30}{31}$=$\frac{10}{31}$,
故选:D
点评 本题主要考查数列求和的计算,利用裂项法是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -sin$\frac{α}{2}$ | B. | cos$\frac{α}{2}$ | C. | sin$\frac{α}{2}$ | D. | -cos$\frac{α}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com