精英家教网 > 高中数学 > 题目详情
8.若复数$\frac{a+i}{1+2i}$是纯虚数,则实数a的值为-2.

分析 设$\frac{a+i}{1+2i}$=bi,(b≠0),根据复数相等解方程即可.

解答 解:∵复数$\frac{a+i}{1+2i}$是纯虚数,
∴设$\frac{a+i}{1+2i}$=bi,(b≠0),
则a+i=(1+2i)bi=-2b+bi,
则$\left\{\begin{array}{l}{a=-2b}\\{b=1}\end{array}\right.$,
解得a=-2,
故答案为:-2

点评 本题主要考查复数的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知O(0,0),M(-1,-2),N(3,n)均在直线l上,
(1)求n的值及直线l的斜率;
(2)若点P为直线l上一个动点,A(1,5),B(7,1),求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设二次函数g(x)的图象在点(m,g(m))的切线方程为y=h(x),若f(x)=g(x)-h(x)
则下面说法正确的有:①④⑤
①存在相异的实数x1,x2使f(x1)=f(x2)成立;
②f(x)在x=m处取得极小值;
③f(x)在x=m处取得极大值;
④不等式$|{f(x)}|<\frac{1}{2015}$的解集非空;
⑤直线 x=m一定为函数f(x)图象的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=2sinx在区间[$\frac{π}{6}$,$\frac{4π}{3}$)的值域是(  )
A.[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)B.(-$\sqrt{3}$,2]C.[$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]D.[-$\sqrt{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列$\frac{1}{1×4},\frac{1}{4×7},\frac{1}{7×10},…,\frac{1}{(3n-2)(3n+1)},…$的前10项和为(  )
A.$\frac{27}{28}$B.$\frac{9}{28}$C.$\frac{30}{31}$D.$\frac{10}{31}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,点A,B是单位圆上的两点,A,B点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,记∠COA=α.
(1)若点A的坐标为($\frac{3}{5}$,$\frac{4}{5}$),求cos2α的值;
(2)分别过A,B作x轴的垂线,垂足为D,E,求当角α为何值时,三角形AED面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$θ∈(0,\frac{π}{2})$,$sinθ=\frac{3}{5}$,求$sin(θ-\frac{π}{6})$和cos2θ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax+xlnx+1(a∈R),g(x)=xcosx-$\frac{1}{2}{x^3}$+1;
(Ⅰ) 当a=-1时,设L为曲线y=g(x)在x=0处的切线,判断L是否为曲线y=f(x)的切线?并说明理由;
(Ⅱ)若x≥1,总有f(x)≥g(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在△ABC中,角A、B、C的对边分别为a、b、c,且(2c-a)cosB=bcosA.
(1)求角B的值;
(2)若a=3,b=2$\sqrt{2}$,求c的值.

查看答案和解析>>

同步练习册答案