精英家教网 > 高中数学 > 题目详情
2.化简:$sin({π+α})+tan({-π-α})sin({\frac{3π}{2}-α})$.

分析 由诱导公式和同角三角函数的基本关系化简可得.

解答 解:由诱导公式和同角三角函数的基本关系可得:
$sin({π+α})+tan({-π-α})sin({\frac{3π}{2}-α})$
=-sinα+(-tanα)(-cosα)
=-sinα+tanαcosα
=-sinα+$\frac{sinα}{cosα}$•cosα
=-sinα+sinα=0.

点评 本题考查三角函数的化简求值,涉及诱导公式和同角三角函数的基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.阅读如图的算法框图,输出结果S的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)的最小正周期为π,
(1)求ω的值与函数f(x)的图象的对称轴方程;
(2)若角A为△ABC的最小内角,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(2,0),B(-2,4),C(5,8),若线段AB和CD有相同的中垂线,则点D的坐标是(-6,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a=2${\;}^{-\frac{1}{3}}$,b=log2$\frac{1}{3}$,c=3${\;}^{-\frac{1}{2}}$,则a,b,c的大小关系是(  )
A.c>a>bB.a>b>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.常用的抽样方法有:简单随机抽样、分层抽样、系统抽样.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=2sin(x+\frac{π}{4})$
(1)用“五点法”作出函数$f(x)=2sin(x+\frac{π}{4})$的简图;
(2)求出函数的最大值及取得最大值时的x的值;
(3)求出函数在[0,2π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知-$\frac{3π}{2}$<α<-π,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值为(  )
A.-sin$\frac{α}{2}$B.cos$\frac{α}{2}$C.sin$\frac{α}{2}$D.-cos$\frac{α}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直线l到两条平行直线2x-7y+2=0和2x-7y+4=0的距离相等,求直线l的方程.

查看答案和解析>>

同步练习册答案