6£®ÈçͼËùʾ£¬ÓÉÖ±Ïßx=a£¬x=a+1£¨a£¾0£©£¬y=x2¼°xÖáΧ³ÉµÄÇú±ßÌÝÐεÄÃæ»ý½éÓÚÏàӦС¾ØÐÎÓë´ó¾ØÐεÄÃæ»ýÖ®¼ä£¬¼´a2£¼${¡Ò}_{a}^{a+1}$x2dx£¼£¨a+1£©2£®Àà±ÈÖ®£¬?n¡ÊN*£¬$\frac{1}{n+1}$+$\frac{1}{n+2}$+¡­+$\frac{1}{2n}$£¼A£¼$\frac{1}{n}$+$\frac{1}{n+1}$+¡­+$\frac{1}{2n-1}$ºã³ÉÁ¢£¬ÔòʵÊýA=ln2£®

·ÖÎö ÁîA=A1+A2+A3+¡­+An£¬¸ù¾Ý¶¨»ý·ÖµÄ¶¨ÒåµÃµ½£ºA1=-lnn+ln£¨n+1£©£¬Í¬ÀíÇó³öA2£¬A3£¬¡­£¬AnµÄÖµ£¬Ïà¼ÓÇó³ö¼´¿É£®

½â´ð ½â£ºÁîA=A1+A2+A3+¡­+An£¬
ÓÉÌâÒâµÃ£º$\frac{1}{n+1}$£¼A1£¼$\frac{1}{n}$£¬$\frac{1}{n+2}$£¼A2£¼$\frac{1}{n+1}$£¬$\frac{1}{n+3}$£¼A3£¼$\frac{1}{n+2}$£¬¡­£¬$\frac{1}{2n}$£¼An£¼$\frac{1}{2n-1}$£¬
¡àA1=${¡Ò}_{n}^{n+1}$$\frac{1}{x}$dx=lnx${|}_{n}^{n+1}$=ln£¨n+1£©-lnn£¬
ͬÀí£ºA2=-ln£¨n+1£©+ln£¨n+2£©£¬A3=-ln£¨n+2£©+ln£¨n+3£©£¬¡­£¬An=-ln£¨2n-1£©+ln2n£¬
¡àA=A1+A2+A3+¡­+An
=-lnn+ln£¨n+1£©-ln£¨n+1£©+ln£¨n+2£©-ln£¨n+2£©+ln£¨n+3£©-¡­-ln£¨2n-1£©+ln2n
=ln2n-lnn
=ln2£¬
¹Ê´ð°¸Îª£ºln2£®

µãÆÀ ±¾Ì⿼²é¶¨»ý·ÖµÄ¼òµ¥Ó¦Ó㬸ù¾Ý¶¨»ý·ÖµÄ¶¨ÒåµÃµ½A1£¬A2£¬A3£¬¡­£¬AnµÄÖµÊǽâÌâµÄ¹Ø¼ü£¬±¾ÌâÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{lo{g}_{2}£¨x-1£©}$µÄ¶¨ÒåÓòΪA£¬º¯Êýg£¨x£©=£¨$\frac{1}{2}$£©x£¨-1¡Üx¡Ü0£©µÄÖµÓòΪB£®
£¨1£©Ç󼯺ÏA¡¢B£¬²¢ÇóA¡ÉB£»
£¨2£©ÈôC={y|y¡Üa-1}£¬ÇÒB⊆C£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÉèÈ«¼¯ÊÇʵÊý¼¯R£¬A={x|x2£¾4}£¬$B=\left\{{x|\frac{2}{x-1}¡Ý1}\right\}$£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®[-2£¬3]B£®[-2£¬3£©C£®£¨1£¬2]D£®[1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®½«ÕýÕûÊý1£¬3£¬5£¬7£¬9¡­ÅųÉÒ»¸öÈý½ÇÐÎÊýÕó£º

°´ÕÕÒÔÉÏÅÅÁеĹæÂÉ£¬µÚnÐУ¨n¡Ý3£©µÄËùÓÐÊýÖ®ºÍΪn3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-4£¬x¡Ü0}\\{-{x}^{2}+2x+lnx£¬x£¾0}\end{array}\right.$µÄÁãµã¸öÊýÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÓÉÃݺ¯Êýy=$\sqrt{x}$ºÍÃݺ¯Êýy=x3ͼÏóΧ³ÉµÄ·â±ÕͼÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{12}$B£®$\frac{1}{4}$C£®$\frac{1}{3}$D£®$\frac{5}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ôڱ߳¤Îª1µÄÕý·½ÐÎABCDÖÐÈÎȡһµãP£¬Ôò¡÷ABPµÄÃæ»ý´óÓÚ$\frac{1}{4}$µÄ¸ÅÂÊÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑ֪ʵÊýa¡Ê{-2£¬-1£¬1£¬2}£¬b={-2£¬-1£¬1£¬2}£®
£¨1£©Çóµã£¨a£¬b£©ÔÚµÚÒ»ÏóÏ޵ĸÅÂÊ£»
£¨2£©ÇóÖ±Ïßy=ax+bÓëÔ²x2+y2=1Óй«¹²µãµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èô²»µÈʽx2-2mx+m2-1£¼0³ÉÁ¢µÄ±ØÒª²»³ä·ÖÌõ¼þÊÇ$\frac{1}{3}$£¼x£¼$\frac{7}{2}$£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬$\frac{4}{3}$]¡È[$\frac{5}{2}$£¬+¡Þ£©B£®£¨-¡Þ£¬$\frac{4}{3}$]¡È£¨$\frac{5}{2}$£¬+¡Þ£©C£®[$\frac{4}{3}$£¬$\frac{5}{2}$]D£®[$\frac{4}{3}$£¬$\frac{5}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸