精英家教网 > 高中数学 > 题目详情
11.由幂函数y=$\sqrt{x}$和幂函数y=x3图象围成的封闭图形的面积为(  )
A.$\frac{1}{12}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{12}$

分析 联立两个解析式得到两曲线的交点坐标,然后对函数解析式求定积分即可得到结论.

解答 解:两幂函数图象交点坐标是(0,0),(1,1),
所以S=${∫}_{0}^{1}(\sqrt{x}-{x}^{3})dx$=($\frac{2}{3}{x}^{3}-\frac{1}{4}{x}^{4}$)${|}_{0}^{1}$=$\frac{5}{12}$.
故选:D

点评 本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=x2-1,对任意x∈[$\frac{3}{2}$,+∞),f($\frac{x}{m}$)-4m2f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围是$(-∞,-\frac{{\sqrt{3}}}{2}]∪[\frac{{\sqrt{3}}}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简求值:
(1)$\root{3}{{a}^{\frac{9}{2}\sqrt{{a}^{-3}}}}$÷$\sqrt{\root{3}{{a}^{-7}•}\root{3}{{a}^{13}}}$
(2)lg52+$\frac{2}{3}lg8+lg5lg20+{(lg2)^2}$
(3)${0.001^{-\frac{1}{3}}}-{(\frac{7}{8})^0}+{16^{\frac{3}{4}}}+{(\sqrt{2}•\root{3}{3})^6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知U=R,集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则∁UA∩B=(  )
A.(-1,2)B.[-2,3)C.[-2,-1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,由直线x=a,x=a+1(a>0),y=x2及x轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即a2<${∫}_{a}^{a+1}$x2dx<(a+1)2.类比之,?n∈N*,$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<A<$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{2n-1}$恒成立,则实数A=ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$f({log_2}x)=a{x^2}-2x+1-a$,a∈R.
(1)求f(x)的解析式;
(2)若关于x的方程f(x)=(a-2)•4x有正实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知复数z1=$\sqrt{3}$-i,z2=1+$\sqrt{3}$i,若z=z1z2,则|z|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,若x<0时,f(x)=x2-2x,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈[0,1]时,f(x)=1-2|x-$\frac{1}{2}$|,求方程f[f(x)]=$\frac{5}{4(x-1)}$在区间[-1,3]上的不等实根之和.

查看答案和解析>>

同步练习册答案