分析 根据函数奇偶性的性质,利用对称性进行求解即可.
解答 解:∵函数f(x)是定义在R上的奇函数,
∴f(0)=0,
若x>0,则-x<0,即f(-x)=x2+2x,
∵f(x)是定义在R上的奇函数,
∴f(-x)=x2+2x=-f(x),
即f(x)=-x2-2x,x>0,
则函数的解析式为f(x)=$\left\{\begin{array}{l}{x^2}-2x\\ 0\\-{x^2}-2x\end{array}\right.$,$\begin{array}{l}x<0\\ x=0\\ x>0\end{array}$.
点评 本题主要考查函数解析式的求解,利用函数奇偶性的性质是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{12}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com