精英家教网 > 高中数学 > 题目详情
11.圆:x2+y2-2x+4y=0和圆:x2+y2-4x=0交于A,B两点,则AB的垂直平分线的方程是(  )
A.2x-y-4=0B.2x+y-4=0C.2x+3y+4=0D.x+2y=0

分析 要求两个圆的交点的中垂线方程,就是求两个圆的圆心的连线方程,求出两个圆的圆心坐标,利用两点式方程求解即可.

解答 解:由题意圆:x2+y2-2x+4y=0和圆:x2+y2-4x=0交于A、B两点,则AB的垂直平分线的方程,就是求两个圆的圆心的连线方程,
圆:x2+y2-2x+4y=0的圆心(1,-2)和圆:x2+y2-4x=0的圆心(2,0),
所以所求直线方程为:$\frac{y+2}{0+2}=\frac{x-1}{2-1}$,即2x-y-4=0.
故选:A.

点评 本题是基础题,考查两个圆的位置关系,弦的中垂线方程的求法,考查计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.程序框图输出a,b,c的含义是(  )
A.输出的a是原来的c,输出的b是原来的a,输出的c是原来的b
B.输出的a是原来的c,输出的b是新的x,输出的c是原来的b
C.输出的a是原来的c,输出的b是新的x,输出的c是原来的b
D.输出的a,b,c均等于x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列四个命题,其中不正确的命题为(  )
①若cos α=cos β,则α-β=2kπ,k∈Z;
②函数y=2cos$\frac{x}{3}$的图象关于x=$\frac{π}{12}$对称;
③函数y=cos(sin x)(x∈R)为偶函数;
④函数y=sin|x|是周期函数,且周期为2π.
A.①②B.①④C.①②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.非空数集A如果满足:①0∉A;②若对?x∈A,有$\frac{1}{x}$∈A,则称A是“互倒集”.给出以下数集:
①{x∈R|x2+ax+1=0}; ②{x|x2-4x+1<0};③{y|y=$\left\{\begin{array}{l}{2x+\frac{2}{5},x∈[0,1)}\\{x+\frac{1}{x},x∈[1,2]}\end{array}\right.$}.
其中“互倒集”的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某数学兴趣小组举行了一次趣味口答竞赛,共有5名同学参加.竞赛分两个环节:抢答环节和抽答环节,其中抢答环节共有4道题,抽答环节仅有1道题.
(1)假设抢答环节每人抢答成功的概率均相等,则甲同学成功抢答2次的概率是$\frac{96}{625}$;
(2)已知抢答环节有3名同学成功抢答,抽答环节从装有5名同学名签的纸盒中随机抽取:第一次采取有放回地抽取,若第一次抽到的是抢答成功的同学,则从第二次开始采取无放回地抽取,整个抽答环节抽到未抢答成功的同学即停止.那么抽取的次数X的数学期望E(X)=2.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)是定义在R上的偶函数,且当x>0时,不等式2f(x)+2x•f′(x)<0成立,若a=30.2f(30.2),b=(logπ2)f(logπ2),c=(log2$\frac{1}{4}$)f(log2$\frac{1}{4}$),则a,b,c之间的大小关系为(  )
A.a>c>bB.c>a>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点(1,$\frac{{\sqrt{6}}}{3}$),离心率为$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)若动直线l(不经过椭圆上顶点A)与椭圆C相交于P,Q两点,且$\overrightarrow{AP}$•$\overrightarrow{AQ}$=0,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={1,2,3,4},B={x|y=log2(3-x)},则A∩B=(  )
A.{1,2}B.{1,2,3}C.{1,2,3,4}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=lnx+\frac{1}{2}a{x^2}-({a+1})x({a∈R})$.
(I)a=1时,求函数y=f(x)的零点个数;
(Ⅱ)当a>0时,若函数y=f(x)在区间[1,e]上的最小值为-2,求a的值;
(Ⅲ)若关于x的方程$f(x)=\frac{1}{2}a{x^2}$有两个不同实根x1,x2,求实数a的取值范围并证明:${x_1}•{x_2}>{e^2}$.

查看答案和解析>>

同步练习册答案