精英家教网 > 高中数学 > 题目详情
6.给出下列命题:
(1)终边在y轴上的角的集合是{a|a=$\frac{kπ}{2}$,k∈Z};
(2)把函数f(x)=2sin2x的图象沿x轴方向向左平移$\frac{π}{6}$个单位后,得到的函数解析式可以表示成f(x)=2sin[2(x+$\frac{π}{6}$)];
(3)函数f(x)=$\frac{1}{2}$sinx+$\frac{1}{2}$|sinx|的值域是[-1,1].
以上正确的是(2).

分析 举例说明(1)不正确,由三角函数的变换判断(2)正确,求函数f(x)=$\frac{1}{2}$sinx+$\frac{1}{2}$|sinx|的值域判断(3)不正确.

解答 解:对于(1),当k=2时α=π,其终边在x轴上,故(1)不正确;
对于(2),由三角函数的变换可知正确,故(2)正确;
对于(3),$f(x)=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|=\left\{\begin{array}{l}sinx,sinx≥0\\ 0,sinx<0\end{array}\right.$,
∴函数f(x)的值域为[0,1],故(3)不正确.
∴正确的命题是:(2).
故答案为:(2).

点评 本题考查了命题的真假判断与应用,考查了三角函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数y=ax-1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中m>0,n>0,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.5B.7C.9D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点(m,n)在椭圆8x2+3y2=24上,则2m+4的取值范围是(  )
A.[4-2$\sqrt{3}$,4+2$\sqrt{3}$]B.[4-$\sqrt{3}$,4+$\sqrt{3}$]C.[4-2$\sqrt{2}$,4+2$\sqrt{2}$]D.[4-$\sqrt{2}$,4+$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线${x^2}-\frac{y^2}{3}=1$的渐近线方程是(  )
A.y=±xB.$y=±\frac{1}{3}x$C.$y=±\sqrt{3}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex+2ax.
(l)求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上的最小值为0,求a的值;
(3)若对于任意x≥0,f(x)≥e-x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=$\sqrt{3}$,B=$\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.由曲线y=$\sqrt{x+1}$,直线y=x-1及x=-1所围成的图形的面积为(  )
A.4B.$\frac{10}{3}$C.6D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列三个命题:
①命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
②若p:x(x-2)≤0,q:log2x≤1,则p是q的充要条件;
③若命题p:存在x∈R,使得2x<x2,则?p:任意x∈R,均有2x≥x2
其中正确命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.正方体ABCD-A1B1C1D1中棱长为1,则面A1BD与底面ABCD所成的角余弦值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{6}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案