精英家教网 > 高中数学 > 题目详情
16.已知函数y=ax-1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中m>0,n>0,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.5B.7C.9D.13

分析 根据指数函数的性质,可以求出A点,把A点代入一次函数y=mx+n,得出m+n=1,然后利用“1”的代换,结合基本不等式进行求解.

解答 解:∵函数y=ax-1(a>0,且a≠1)的图象恒过定点A,
可得A(1,1),
∵点A在一次函数y=mx+n的图象上,
∴m+n=1,∵m,n>0,
∴m+n=1,
∴$\frac{1}{m}$+$\frac{4}{n}$=($\frac{1}{m}$+$\frac{4}{n}$)(m+n)=5+$\frac{n}{m}$+$\frac{4m}{n}$≥9(当且仅当n=$\frac{2}{3}$,m=$\frac{1}{3}$时等号成立),
∴$\frac{1}{m}$+$\frac{4}{n}$的最小值为9.
故选:C.

点评 此题主要考查的指数函数和一次函数的性质及其应用,还考查的均值不等式的性质,把不等式和函数联系起来进行出题,是一种常见的题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=2sin(2x-$\frac{π}{3}$)的减区间是(  )
A.[$\frac{5π}{12}$,$\frac{11π}{12}$],k∈ZB.[$\frac{5π}{12}$+kπ,$\frac{11π}{12}$+kπ],k∈Z
C.[$-\frac{π}{12}$+2kπ,$\frac{5π}{12}$+2kπ],k∈ZD.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知在等比数列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$,则a4=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的奇函数f(x)在(0,+∞)上是增函数且f(-2)=0,则xf(x)<0的解集为(  )
A.(-∞,-2)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列1,a1,a2,8是等差数列,数列1,b1,b2,b3,16是等比数列,则$\frac{{b}_{2}}{{a}_{1}+{a}_{2}}$的值为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的偶函数,且T=4,当x∈(0,2)时,f(x)=log2(3x+1),则f(2015)=(  )
A.4B.2C.-2D.log27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个圆锥的轴截面为正三角形,则该圆锥的侧面展开图是扇角为180°(填扇角的度数)的扇形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,曲线L的极坐标方程为:7cos${\;}^{2}θ=\frac{144}{{ρ}^{2}}-9$,以极点为原点,极轴为x的非负半轴,取与极坐标系相同的单位长度,建立平面直角坐标系,在直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=7+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)在直角坐标系中,写出曲线L的一个参数方程和直线l的普通方程;
(2)在曲线L上任取一点P,求点P到直线l距离的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列命题:
(1)终边在y轴上的角的集合是{a|a=$\frac{kπ}{2}$,k∈Z};
(2)把函数f(x)=2sin2x的图象沿x轴方向向左平移$\frac{π}{6}$个单位后,得到的函数解析式可以表示成f(x)=2sin[2(x+$\frac{π}{6}$)];
(3)函数f(x)=$\frac{1}{2}$sinx+$\frac{1}{2}$|sinx|的值域是[-1,1].
以上正确的是(2).

查看答案和解析>>

同步练习册答案