【题目】定义:如果函数在定义域内给定区间上存在,满足 ,则称函数是上的“平均值函数”,是它的均值点.
(1)是否是上的“平均值函数”,如果是请找出它的均值点;如果不是,请说明理由;
(2)现有函数是上的平均值函数,则求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.
(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B﹣CDM的体积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对其30位亲属的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).
(1)根据茎叶图,帮助这位同学说明这30位亲属的饮食习惯.
(2)根据以上数据完成如下2×2列联表.
(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为常数,函数.
(1)当时,求关于的不等式的解集;
(2)当时,若函数在上存在零点,求实数的取值范围;
(3)当时,对于给定的,且,,证明:关于的方程在区间内有一个实根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个对应f,不是从集合A到集合B的函数的是( ).
A. A= ,B={-6,-3,1},,f (1)=-3,;
B. A=B={x|x≥-1},f (x)=2x+1;
C. A=B={1,2,3},f (x)=2x-1;
D. A=Z,B={-1,1},n为奇数时,f (n)=-1,n为偶数时,f (n)=1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a为实数).
(1)当a=4时,求函数y=g(x)在x=0处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值;
(3)如果关于x的方程g(x)=2exf(x)在区间[ ,e]上有两个不等实根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,平面底面, ,点分别是的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求证: 平面;
(Ⅲ)在棱上求作一点,使得,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com