精英家教网 > 高中数学 > 题目详情
7.在△ABC中,若b2=ac,$∠B=\frac{π}{3}$,则∠A=$\frac{π}{3}$.

分析 根据余弦定理求解出a,c的关系,即可判断角A的大小.

解答 解:由b2=ac,$∠B=\frac{π}{3}$,
根据余弦定理cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
可得a2+c2=2ac,即(a-c)2=0,
∴a=c,
由b2=ac,可得a=b=c.
△ABC是等边三角形.
∴A=$\frac{π}{3}$
故答案为:$\frac{π}{3}$.

点评 本题考查了余弦定理运用和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-3,5),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则$\overrightarrow{c}$的坐标可以是(  )
A.(-2,3)B.(-2,-3)C.(4,-4)D.(4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),则圆心到直线y=x+3的距离为(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果直线l:y=kx-1(k>0)与双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的一条渐近线平行,那么k=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果集合A={x∈Z|-2≤x<1},B={-1,0,1},那么A∩B=(  )
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E-ABCD(如图2),且DE⊥AB.
(Ⅰ)求证:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;
(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求$\frac{EF}{EA}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在复平面内,复数z=1-2i对应的点到原点的距离是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx-ax(a∈R).
(Ⅰ)若直线y=3x-1是函数f(x)图象的一条切线,求实数a的值;
(Ⅱ)若函数f(x)在[1,e2]上的最大值为1-ae(e为自然对数的底数),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的函数$f(x)={({\frac{1}{3}})^{|x-t|}}$+2(t∈R)为偶函数,记a=f(-log34),b=f(log25),c=f(2t),a,b,c大小关系为(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

同步练习册答案