精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|y=lg(4-3x-x2)},集合B={x|2x<1},则A∩B=(  )
A.{x|x<0}B.{x|-4<x<0}C.{x|-4<x<1}D.{x|x<1}

分析 求定义域得集合A,解不等式得集合B,根据定义写出A∩B.

解答 解:集合A={x|y=lg(4-3x-x2)}={x|4-3x-x2>0}={x|-4<x<1},
集合B={x|2x<1}={x|x<0},
则A∩B={x|-4<x<0}.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.命题:①半径为2,圆心角的弧度数为$\frac{1}{2}$的扇形的周长为5;
②若α、β为第三象限角,且α>β,则cosα>cosβ;
③若直线的斜率是-cosθ,则其倾斜角的取值范围是[$\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}$];
④当x≠$\frac{kπ}{2}$(k∈Z))时,$\frac{sinx+tanx}{cosx+cotx}$的值恒正.其中正确的命题是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,$A=\frac{π}{3}$,$a=\sqrt{3}$,$b=\sqrt{2}$,则C=(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{7π}{12}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:
(1)有女生但人数必须少于男生;
(2)男生甲必须包括在内,但不担任数学课代表;
(3)女生乙一定要担任语文课代表,男生丙只想担任数学课代表或物理课代表.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与双曲线在第一、二象限内依次交于A,B两点,若|F1B|=3|F2A|,则该双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l经过点P(2,1),则
(1)若直线l与x轴、y轴的正半轴分别交于A、B两点,且△OAB的面积为4,求直线l的方程;
(2)若直线l与原点距离为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若曲线y=ax与y=logax(a>1)有一个公共点A,且这两条曲线在点A处的切线的斜率都是1,则a的值为${e}^{\frac{1}{e}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x0∈R,x3-x2+1>0”的否定是?x∈R,x3-x2+1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=lnx+$\frac{1}{2}{x^2}$+ax(a∈R),g(x)=ex+$\frac{3}{2}{x^2}$.
(1)讨论f(x)的极值点的个数;
(2)若对于?x>0,总有f(x)≤g(x).(i)求实数a的取值范围;(ii)求证:对于?x>0,不等式ex+x2-(e+1)x+$\frac{e}{x}$>2成立.

查看答案和解析>>

同步练习册答案