精英家教网 > 高中数学 > 题目详情
14.函数f(x)=lnx+$\frac{1}{2}{x^2}$+ax(a∈R),g(x)=ex+$\frac{3}{2}{x^2}$.
(1)讨论f(x)的极值点的个数;
(2)若对于?x>0,总有f(x)≤g(x).(i)求实数a的取值范围;(ii)求证:对于?x>0,不等式ex+x2-(e+1)x+$\frac{e}{x}$>2成立.

分析 (1)求f(x)的导数f′(x),根据x>0求出f'(x)的值域,讨论a的值得出f′(x)的正负情况,判断f(x)的单调性和极值点问题;
(2)(i)f(x)≤g(x)等价于ex-lnx+x2≥ax,由x>0,利用分离常数法求出a的表达式,再构造函数求最值即可;
(ii)由( i)结论,a=e+1时有f(x)≤g(x),得出不等式,再进行等价转化,证明转化的命题成立即可.

解答 解:(1)由题意得f'(x)=x+$\frac{1}{x}$+a=$\frac{{x}^{2}+ax+1}{x}$,
当a2-4≤0,即-2≤a≤2时,f'(x)≥0恒成立,无极值点;
当a2-4>0,即a<-2或a>2时,
①a<-2时,设方程x2+ax+1=0两个不同实根为x1,x2,不妨设x1<x1,x2
则x1+x2=-a>0,x1x2=1>0,故0<x1<x2
∴x1,x2是函数的两个极值点.
②a>2时,设方程x2+ax+1=0两个不同实根为x1,x2
则x1+x2=-a<0,x1x2=1>0,故x1<0,x2<0,
故函数没有极值点.
综上,当a<-2时,函数有两个极值点;
当a≥-2时,函数没有极值点.
(2)(i)f(x)≤g(x)等价于ex-lnx+x2≥ax,
由x>0,即a≤$\frac{{e}^{x}{+x}^{2}-lnx}{x}$对于?x>0恒成立,
设φ(x)=$\frac{{e}^{x}{+x}^{2}-lnx}{x}$(x>0),
φ′(x)=$\frac{{e}^{x}(x-1)+lnx+(x+1)(x-1)}{{x}^{2}}$,
∵x>0,∴x∈(0,1)时,φ'(x)<0,φ(x)单调递减,
x∈(1,+∞)时,φ'(x)>0,φ(x)单调递增,
∴φ(x)≥φ(1)=e+1,
∴a≤e+1.
(ii)( ii)由( i)知,当a=e+1时有f(x)≤g(x),
即:ex+$\frac{3}{2}$x2≥lnx+$\frac{1}{2}$x2+(e+1)x,
等价于ex+x2-(e+1)x≥lnx…①当且仅当x=1时取等号,
以下证明:lnx+$\frac{e}{x}$≥2,
设θ(x)=lnx+$\frac{e}{x}$,则θ′(x)=$\frac{1}{x}$-$\frac{e}{{x}^{2}}$=$\frac{x-e}{{x}^{2}}$,
∴当x∈(0,e)时θ'(x)<0,θ(x)单调递减,
x∈(e,+∞)时θ'(x)>0,θ(x)单调递增,
∴θ(x)≥θ(e)=2,
∴lnx+$\frac{e}{x}$≥2,②当且仅当x=e时取等号;
由于①②等号不同时成立,故有ex+x2-(e+1)x+$\frac{e}{x}$>2.

点评 本题考查了函数与导数的综合应用问题,也考查了求函数最值与不等式恒成立问题,是综合性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|y=lg(4-3x-x2)},集合B={x|2x<1},则A∩B=(  )
A.{x|x<0}B.{x|-4<x<0}C.{x|-4<x<1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下判断正确的序号是(2)(3)(4)
(1)函数y=f(x)为R上的可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件.
(2)$\int_0^4{(|x-1|+|x-3|)}dx$=10.
(3)已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为(-2,$\frac{2}{3}$).
(4)设f1(x)=cosx,定义fn+1(x)为fn(x)的导数,即fn+1(x)=f′n(x)n∈N,若△ABC的内角A满足${f_1}(A)+{f_2}(A)+…+{f_{2014}}(A)=\frac{1}{3}$,则sin2A=$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边经过点P(4,-3),那么cosα-sinα的值是(  )
A.$\frac{1}{5}$B.-$\frac{7}{5}$C.$-\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知一几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{6}+\frac{1}{3}$B.$\frac{π}{12}+1$C.$\frac{π}{12}+\frac{1}{3}$D.$\frac{π}{4}+\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.己知某几何体的三视图如图所示,则其表面积为(  )
A.6+4$\sqrt{2}$B.4+4$\sqrt{2}$C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x>0,由不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,推广到x+$\frac{a}{{x}^{n}}$≥n+1,则a=(  )
A.2nB.2nC.n2D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=1+tsinα}\end{array}\right.$(0≤α<π,t为参数),曲线C的极坐标方程为ρ=$\frac{4cosθ}{si{n}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1,x2,得分的方差分别为y1,y2,则下列结论正确的是(  )
A.x1<x2,y1<y2B.x1<x2,y1>y2C.x1>x2,y1>y2D.x1>x2,y1<y2

查看答案和解析>>

同步练习册答案