设正数列的前项和为,且.
(1)求数列的首项;
(2)求数列的通项公式;
(3)设,是数列的前项和,求使得对所有都成立的最小正整数.
(1) ;(2) ;(3) .
解析试题分析:(1) ,所以在中, ,令,可得关于的方程,解之可得.
(2) 在中, 用代替,得:
于是有方程组,两式分别平方再相减可得,即:
由此探究数列的特点,从而求其通项公式;
(3)根据数列数列的通项公式特点,有
故可用拆项法化简数列的前项和,并由的范围求出的值.
试题解析:(1)当时,由且,解得 2分
(2)由,得 ①
∴ ②
②-①得:
化简,得 4分
又由,得
∴,即 5分
∴数列是以1为首项,公差为2的等差数列 6分
∴,即 8分
(3) 10分
∴
12分
∴要使对所有都成立,只需,即
∴满足条件的最小正整数. 14分
考点:1、数列通项与的关系;2、拆项求和.
科目:高中数学 来源: 题型:解答题
等差数列{an}的各项均为正数,其前n项和为Sn,满足2S2=a2(a2+1),且a1=1.
(1)求数列{an}的通项公式.
(2)设bn=,求数列{bn}的最小值项.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设各项均为正数的数列的前项和为,满足且恰好是等比数列的前三项.
(Ⅰ)求数列、的通项公式;
(Ⅱ)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,数列{bn}的前n项和Tn,求满足不等式≥的最大n值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
)已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。
(1)求{an}的通项公式;
(2)若Cn=an·bn,求数列{Cn}的前n项和Sn。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com