精英家教网 > 高中数学 > 题目详情
标准正态总体的函数为f(x)=
1
e -
x2
2
,x∈(-∞,+∞)
(1)证明f(x)是偶函数;
(2)求f(x)的最大值;
(3)利用指数函数的性质说明f(x)的增减性.
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)利用定义法求得f(-x)=f(x)证明函数为偶函数.
(2)利用复合函数的单调性求得函数的最大值.
(3)利用复合函数同增异减的原则求得函数的单调区间.
解答: 解:(1)∵f(-x)=
1
e
(-x)2
2
=f(x),
∴f(x)为偶函数.
(2)当x=0时,-
x2
2
有最大值
∴f(x)max=
1

(3)
t=-
x2
2
y=
1
e-t
,由复合函数的单调得,在区间(-∞,0)上函数f(x)单调增,在区间[0,+∞)上单调减.
点评:本题主要考查了函数的奇偶性的应用,复合函数的单调性问题.应熟练应用同增异减的原则来判断函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为菱形,点F为侧棱PC上一点.
(1)若PF=FC,求证:PA∥平面BDF;
(2)若BF⊥PC,求证:平面BDF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆T:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0).
(Ⅰ)若椭圆T的离心率为
5
3
,过焦点且垂直于z轴的直线被椭圆截得弦长为
8
3

①求椭圆方程;
②过点P(2,1)的两条直线分别与椭圆F交于点A,C和B,D,若AB∥CD,求直线AB的斜率;
(Ⅱ)设P(x0,y0)为椭圆T内一定点(不在坐标轴上),过点P的两条直线分别与椭圆T交于点A,C和B,D,且AB∥CD,类比(Ⅰ)②直接写出直线T的斜率.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,又PA⊥底面ABCD,E为BC的中点.
(1)求证:AD⊥PE;
(2)设F是PD的中点,求证:CF∥平面PAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的一个焦点为F(2,0),且离心率为
6
3

(Ⅰ)求椭圆方程;
(Ⅱ)过点M(3,0)且斜率为k的直线与椭圆交于A,B两点,点A关于x轴的对称点为C,求△MBC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x>0时,求证:x3≥3x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,E为对角线BD中点.现将△ABD沿BD折起到△PBD的位置,使平面PBD⊥平面BCD,如图2.
(Ⅰ)求证直线PE⊥平面BCD;
(Ⅱ)求证平面PBC⊥平面PCD;
(Ⅲ)已知空间存在一点Q到点P,B,C,D的距离相等,写出这个距离的值(不用说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+1|+|x-5|,x∈R.
(1)求不等式f(x)<x+10的解集;
(2)如果关于x的不等式f(x)≥a-(x-2)2在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若指数函数y=ax的图象与直线y=x相切,则a=
 

查看答案和解析>>

同步练习册答案