精英家教网 > 高中数学 > 题目详情
8.已知x,y均为非负实数,且满足$\left\{\begin{array}{l}{x+y≤1}\\{4x+y≤2}\end{array}\right.$,则z=x+2y的最大值为(  )
A.1B.$\frac{1}{2}$C.$\frac{5}{3}$D.2

分析 由已知画出可行域,将目标函数变形为直线的斜截式方程,利用其在y在轴的截距最大求z 的最大值.

解答 解:由已知得到可行域如图:则z=x+2y变形为y=-$\frac{1}{2}$x$+\frac{z}{2}$,
当此直线经过图中的C时,在y 轴的截距最大,
且c(0,1),所以z 的最大值为0+2×1=2;
故选D.

点评 本题考查了简单线性规划问题;一般的,正确画出可行域,利用目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.用定义法证明函数f(x)=$\frac{2}{x+1}$在(2,6)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知cos($α+\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,则sin(2$α-\frac{π}{6}$)的值为(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={ y|y=lg|x|},B={x|y=$\sqrt{1-x}$},则A∩B=(  )
A.[0,1]B.(0,1)C.(-∞,1]D.[0,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:eln3+log${\;}_{\sqrt{3}}$9+0.125${\;}^{-\frac{2}{3}}$=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线方程为cos300°x+sin300°y=3,则直线的倾斜角为(  )
A.60°B.60°或300°C.30°D.30°或330°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某高校组织自主招生考试,其有2 000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275).如图是按上述分组方法得到的频率分布直方图.
(1)从这2 000名学生中,任取1人,求这个人的分数在255~265之间的概率约是多少?
(2)求这2 000名学生的平均分数;
(3)若计划按成绩取1 000名学生进入面试环节,试估计应将分数线定为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个项数为偶数的等差数列,其奇数项之和为24,偶数项之和为30,最后一项比第一项大$\frac{21}{2}$,则最后一项为
12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集Y={x|x≤4},集合A=(-2,3),集合B=(-3,2)求
(1)(∁UA)∪B
(2)A∩(∁UB)

查看答案和解析>>

同步练习册答案