精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,且AB=AD=PD=1,CD=2,E为PC的中点.
(1)求证:BE∥平面PAD;
(2)求二面角E-BD-C的余弦值.

(1)详见解析;(2)

解析试题分析:(1)要想证明线面平行,由线面平行的判定定理可知:只需证明此直线与平面内的某一直线平行即可,考虑到E为PC的中点,所以取中点为,连接和AF;然后利用三角形的中位线的性质及空间中平行线的传递性可证BE//AF,再注意BE在平面PAD外,而AF在平面PAD内,从而可证BE∥平面PAD;(2)由已知可知直线DA、DC、DP两两互相垂直,所以我们可以为原点,所在直线为轴建立空间直角坐标系.从而由已知就可写出点P、C、A、B的坐标.进而因为E是PC的中点,求出E的坐标,然后就可写出平面BDE内不共线的两个向量的坐标,如,再设出平面BDE的一个法向量为,利用可求出平面BDE的一个法向量;而平面BDC的一个法向量显然为:,从而利用两法向量的夹角公式:就可求得所求二面角的余弦值.
试题解析:(1)证明:令中点为,连接,     1分
分别是的中点,
,.
四边形为平行四边形.   2分
,平面,
平面                4分
(三个条件少写一个不得该步骤分)   
            5分
(2)以为原点,所在直线为轴建立空间直角坐标系(如图).

.     
因为E是PC的中点,所以E的坐标为               6分
设平面DBE的一个法向量为,而
所以             9分
而平面DBC的一个法向量可为
故                 12分
所以二面角E-BD-C的余弦值为。     13分
考点:1.线面平行;2.二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知三点不共线,为平面外任一点,若由确定的一点与三点共面,则             .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱柱的侧棱与底面垂直,且,,点分别为的中点.
(1)求证:平面
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为a的正方体ABCD-A1B1C1D1中,G为△BC1D的重心,

(1)求证:A1、G、C三点共线;
(2)求证:A1C⊥平面BC1D;
(3)求点C到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是以为中心的菱形,底面上一点,且.
(1)求的长;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.

(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知空间三点的坐标为,若A、B、C三点共线,则      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在空间直角坐标系中,已知点A(1,0,2),B(1,—3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是        

查看答案和解析>>

同步练习册答案