分析 求出原函数的导函数,得到函数在x=$\frac{π}{6}$时的导数,然后由直线方程的点斜式得答案.
解答 解:由y=cosx,得y′=-sinx,
∴$y′{|}_{x=\frac{π}{6}}=-sin\frac{π}{6}=-\frac{1}{2}$,
∴曲线y=cosx在点A($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$)处的切线方程为y-$\frac{\sqrt{3}}{2}=-\frac{1}{2}(x-\frac{π}{6})$,
即$6x+12y-6\sqrt{3}-π=0$.
点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届重庆市高三理上适应性考试一数学试卷(解析版) 题型:解答题
某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.
![]()
(1)若蛋糕店一天制作17个生日蛋糕,
①求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
②在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率.
(2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决定依据,判断应该制作16个是17个?
查看答案和解析>>
科目:高中数学 来源:2017届湖南石门县一中高三9月月考数学(文)试卷(解析版) 题型:解答题
已知函数
是奇函数,
是偶函数.
(1)求
,
的值;
(2)不等式
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com