精英家教网 > 高中数学 > 题目详情
7.如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{{\sum_{i=1}^{7}{(y}_{i}-\overline{y})}^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$=$\frac{n{{\sum_{i=1}^{n}t}_{i}y}_{i}-{\sum_{i=1}^{n}t}_{i}•{\sum_{i=1}^{n}y}_{i}}{n\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$t中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$t.

分析 (1)求出变量y与t的相关系数,可得结论;
(2)求出回归系数,可得回归方程,即可预测2017年我国生活垃圾无害化处理1.83亿吨.

解答 解:(1)变量y与t的相关系数r=$\frac{7×40.17-28×9.32}{7×5.292×0.55}$≈0.99,….(5分)
故可用线性回归模型拟合变量y与t的关系.…..(6分)
(2)$\overline{t}$=4,$\overline{y}$=$\frac{1}{7}$$\sum_{i=1}^{7}$yi,所以$\stackrel{∧}{b}$=$\frac{40.17-7×4×\frac{1}{7}×9.32}{28}$=0.1,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$t=$\frac{1}{7}×9.32-0.10×4≈0.93$,…..(10分)
所以线性回归方程为$\stackrel{∧}{y}$=0.1t+0.93,
当t=9时,$\stackrel{∧}{y}$=0.1×9+0.93=1.83,
因此,我们可以预测2017年我国生活垃圾无害化处理1.83亿吨       …(12分)

点评 本题考查回归方程,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知圆O:x2+y2=1交x轴正半轴于点A,在圆O上随机取一点B,则使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合A={x|3x+2>0},B={x|$\frac{x+1}{x-3}$<0},则A∩B=(  )
A.(-1,+∞)B.(-1,-$\frac{2}{3}$)C.(3,+∞)D.(-$\frac{2}{3}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下三个命题
①设回归方程为$\stackrel{∧}{y}$=3-3x,则变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N (1,σ2) (σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名六年级学生进行了问卷调查得到如图联表.且平均每天喝500ml以上为常喝,体重超过50kg为肥胖.已知在全部100人中随机抽取1人,抽到肥胖的学生的概率为0.8.
常喝不常喝合计
肥胖60
不肥胖10
合计100
(1)求肥胖学生的人数并将上面的列联表补充完整;
(2)是否有95%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
附:参考公式:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥x00.050.0250.0100.0050.001
x03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,AC=2,A=120°,cosB=$\sqrt{3}$sinC.
(Ⅰ)求边AB的长;
(Ⅱ)设D是BC边上一点,且△ACD的面积为$\frac{3\sqrt{3}}{4}$,求∠ADC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}中,a1+a4+a7=$\frac{5}{4}π$,那么cos(a3+a5)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为$\overrightarrow{a}$和$\overrightarrow{b}$,则下列说法中错误的是(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$为平行向量B.$\overrightarrow{a}$与$\overrightarrow{b}$为模相等的向量
C.$\overrightarrow{a}$与$\overrightarrow{b}$为共线向量D.$\overrightarrow{a}$与$\overrightarrow{b}$为相等的向量

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\sqrt{3}sin({2ωx-\frac{π}{3}})+b(ω>0)$,且该函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当$x∈[{0,\frac{π}{3}}]$时,f(x)的最大值为1.
(1)求函数f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若f(x)-3≤m≤f(x)+3在$[{0,\frac{π}{3}}]$上恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案