精英家教网 > 高中数学 > 题目详情
17.已知圆O:x2+y2=1交x轴正半轴于点A,在圆O上随机取一点B,则使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 由题意,使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立时,0°≤∠AOB≤60°,即可求出在圆O上随机取一点B,使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率.

解答 解:由题意,使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立时,0°≤∠AOB≤60°,
∴在圆O上随机取一点B,则使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率为$\frac{120}{360}$=$\frac{1}{3}$,
故选B.

点评 本题考查几何概型,考查向量知识的运用,正确求出角度是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.共享单车的出现方便了人们的出行,深受我市居民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生中按年级用分层抽样的方式随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)如表:
使用时间[0,2](2,4](4,6](6,8](8,10]
人数104025205
(Ⅰ)已知该校大一学生由2400人,求抽取的100名学生中大一学生人数;
(Ⅱ)作出这些数据的频率分布直方图;
(Ⅲ)估计该校大学生每周使用共享单车的平均时间$\overline t$(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{a}$为单位向量,$\overrightarrow{b}$=(0,2),且$\overrightarrow{a}$$•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,M为AD上的点,AE=1,AM=$\frac{1}{2}$.
(Ⅰ)求证:EM⊥BD;
(Ⅱ)设点F是棱BC上一点,若二面角A-DE-F的余弦值为$\frac{\sqrt{10}}{10}$,试确定点F在BC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某单位共有10名员工,他们某年的收入如表:
员工编号12345678910
年薪(万元)44.5656.57.588.5951
(1)求该单位员工当年年薪的平均值和中位数;
(2)从该单位中任取2人,此2人中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望;
(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\widehaty=\widehatbx+\widehata$中系数计算公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{7}{5}=1.4$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x,\overline y$为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于函数f(x)=asinx+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1)、f(-1),所得出的正确结果可能是(  )
A.2和1B.2和0C.2和-1D.2和-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2+bx+c在x=-1处取得极值-1,那么f(x)=(  )
A.x2-2x-4B.x2+x-1C.x2+2xD.x2-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的内角A,B,C成等差数列,对应边a,b,c成等比数列,那么△ABC的形状为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{{\sum_{i=1}^{7}{(y}_{i}-\overline{y})}^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$=$\frac{n{{\sum_{i=1}^{n}t}_{i}y}_{i}-{\sum_{i=1}^{n}t}_{i}•{\sum_{i=1}^{n}y}_{i}}{n\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$t中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$t.

查看答案和解析>>

同步练习册答案