精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x2+bx+c在x=-1处取得极值-1,那么f(x)=(  )
A.x2-2x-4B.x2+x-1C.x2+2xD.x2-2

分析 求出f′(x)=2x+b,由函数f(x)=x2+bx+c在x=-1处取得极值-1,利用导数性质列出方程组,能求出f(x).

解答 解:∵函数f(x)=x2+bx+c,
∴f′(x)=2x+b,
∵函数f(x)=x2+bx+c在x=-1处取得极值-1,
∴$\left\{\begin{array}{l}{f(-1)=1-b+c=-1}\\{{f}^{'}(-1)=-2+b=0}\end{array}\right.$,
解得b=2,c=0,
∴f(x)=x2+2x.
故选:C.

点评 本题考查导数及其应用、不等式、函数等基础知识,考查考查推理论证能力、运算求解能力、抽象概括能力,考查化归与转化思想、函数与方程思想、分类与整合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知f(x)=ex-ax2,g(x)是f(x)的导函数.
(Ⅰ)求g(x)的极值;
(Ⅱ)若f(x)≥x+(1-x)•ex在x≥0时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.我国古代数学名著《九章算术》中有:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”羡除即三个面是等腰梯形、两侧面是三角形的五面梯形ABCDEF隧道(如图),其中,等腰梯形ABCD的下、上底边长分别为6尺和1丈,高为3尺,平面ABCD⊥平面ABFE,等腰梯形ABFE的上底边长为8尺,高为7尺,则得到此“羡除”的容积(  )
A.约84立方尺B.约为105立方尺C.恰为84立方尺D.恰为105立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆O:x2+y2=1交x轴正半轴于点A,在圆O上随机取一点B,则使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{m}$=(a,1-b),$\overrightarrow{n}$=(b,1)(a>0,b>0),若$\overrightarrow{m}⊥\overrightarrow{n}$,则$\frac{1}{a}$+4b的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-2x2-4x.
(1)求函数y=f(x)的单调区间;
(2)求函数f(x)在区间[-1,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若(2x+$\sqrt{3}$)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a42-(a1+a32的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合A={x|3x+2>0},B={x|$\frac{x+1}{x-3}$<0},则A∩B=(  )
A.(-1,+∞)B.(-1,-$\frac{2}{3}$)C.(3,+∞)D.(-$\frac{2}{3}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}中,a1+a4+a7=$\frac{5}{4}π$,那么cos(a3+a5)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案