分析 (Ⅰ)g(x)=f'(x)=ex-2ax,g'(x)=ex-2a,分a≤0,a>0讨论;
(Ⅱ)f(x)≥x+(1-x)ex,即ex-ax2≥x+ex-xex,即ex-ax-1≥0,
令h(x)=ex-ax-1,分a≤1,a>1讨论求得实数a的取值范围;
解答 解:(Ⅰ)f(x)=ex-ax2,g(x)=f'(x)=ex-2ax,g'(x)=ex-2a,
当a≤0时,g'(x)>0恒成立,g(x)无极值;
当a>0时,g'(x)=0,即x=ln(2a),
由g'(x)>0,得x>ln(2a);由g'(x)<0,得x<ln(2a),
所以当x=ln(2a)时,有极小值2a-2aln(2a).
(Ⅱ)f(x)≥x+(1-x)ex,即ex-ax2≥x+ex-xex,即ex-ax-1≥0,
令h(x)=ex-ax-1,则h'(x)=ex-a,
当a≤1时,由x≥0知h'(x)≥0,∴h(x)≥h(0)=0,原不等式成立,
当a>1时,h'(x)=0,即x=lna,h'(x)>0,得x>lna;h'(x)<0,得x<lna,
所以h(x)在(0,lna)上单调递减,
又∵h(0)=0,∴a>1不合题意,
综上,a的取值范围为(-∞,1].
点评 本题考查了导数的综合应用,分类讨论思想、转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 步数 性别 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
| 男 | 1 | 2 | 3 | 6 | 8 |
| 女 | 0 | 2 | 10 | 6 | 2 |
| 积极型 | 懈怠型 | 总计 | |
| 男 | 14 | 8 | 22 |
| 女 | 6 | 12 | 18 |
| 总计 | 20 | 20 | 40 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 使用时间 | [0,2] | (2,4] | (4,6] | (6,8] | (8,10] |
| 人数 | 10 | 40 | 25 | 20 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-2x-4 | B. | x2+x-1 | C. | x2+2x | D. | x2-2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com