精英家教网 > 高中数学 > 题目详情
11.某沿海四个城市A、B、C、D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,CD=250$\sqrt{6}$nmile,D位于A的北偏东75°方向.现在有一艘轮船从A出发以50nmile/h的速度向D直线航行,60min后,轮船由于天气原因收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ度,则sinθ=$\frac{{\sqrt{6}-\sqrt{2}}}{4}$.

分析 求出AD,可得∠DAC=90°,即可得出结论.

解答 解:由题意,AC=$\sqrt{6400+1600+2700+2400\sqrt{3}-2×80×(40+30\sqrt{3})×\frac{1}{2}}$=50$\sqrt{3}$nmile,
60min后,轮船到达D′,AD′=50×1=50nmile
∵$\frac{50\sqrt{3}}{80}$=$\frac{50\sqrt{3}}{\frac{\sqrt{3}}{2}}$∴sin∠ACB=$\frac{4}{5}$,
∴cos∠ACD=cos(135°-∠ACB)=$\frac{\sqrt{2}}{10}$,
∴AD=$\sqrt{7500+62500×6-2×50\sqrt{3}×250\sqrt{6}×\frac{\sqrt{2}}{10}}$=350$\sqrt{3}$,
∴cos∠DAC=$\frac{7500+122500×3-62500×6}{2×50\sqrt{3}×350\sqrt{3}}$=0,∴∠DAC=90°,
∴CD′=$\sqrt{2500+7500}$=100,∴∠AD′C=60°,
∴sinθ=sin(75°-60°)=$\frac{{\sqrt{6}-\sqrt{2}}}{4}$,
故答案为$\frac{{\sqrt{6}-\sqrt{2}}}{4}$.

点评 本题考查正弦、余弦定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow a+2\overrightarrow b$与$λ\overrightarrow a-\overrightarrow b$垂直,则实数λ的值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.高三某班有50名学生,一次数学考试的成绩ξ服从正态分布:ξ~N(105,102),已知P(95≤ξ≤105)=0.3413,该班学生此次考试数学成绩在115分以上的概率为(  )
A.0.1587B.0.3413C.0.1826D.0.5000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=ex-ax2,g(x)是f(x)的导函数.
(Ⅰ)求g(x)的极值;
(Ⅱ)若f(x)≥x+(1-x)•ex在x≥0时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数$z=\frac{10i}{1+3i}$(其中i为虚数单位),$\overline z$为z的共轭复数,则下列结论正确的是(  )
A.z=-3+iB.$\overline z=3-i$C.z=1-3iD.$\overline z=-1+3i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为了得到函数$y=2cos({2x-\frac{π}{6}})$的图象,只需将函数y=2sin2x图象上所有的点(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,左、右焦点分别为F1、F2,且C1与抛物线C2:y2=x的交点所在的直线经过F2
(Ⅰ)求椭圆C1的方程;
(Ⅱ)过F1的直线l与C1交于A,B两点,与抛物线C2无公共点,求△ABF2的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.我国古代数学名著《九章算术》中有:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”羡除即三个面是等腰梯形、两侧面是三角形的五面梯形ABCDEF隧道(如图),其中,等腰梯形ABCD的下、上底边长分别为6尺和1丈,高为3尺,平面ABCD⊥平面ABFE,等腰梯形ABFE的上底边长为8尺,高为7尺,则得到此“羡除”的容积(  )
A.约84立方尺B.约为105立方尺C.恰为84立方尺D.恰为105立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若(2x+$\sqrt{3}$)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a42-(a1+a32的值为1.

查看答案和解析>>

同步练习册答案