精英家教网 > 高中数学 > 题目详情
16.为了得到函数$y=2cos({2x-\frac{π}{6}})$的图象,只需将函数y=2sin2x图象上所有的点(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

分析 利用诱导公式,y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:为了得到函数$y=2cos({2x-\frac{π}{6}})$=2sin(2x+$\frac{π}{3}$)=2sin2(x+$\frac{π}{6}$)的图象,
只需将函数y=2sin2x图象上所有的点向左平移$\frac{π}{6}$个单位长度,
故选:C.

点评 本题主要考查诱导公式,y=Asin(ωx+φ)的图象变换规律,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某校高三年级学生一次数学诊断考试成绩(单位:分)X服从正态分布N(110,102),从中抽取一个同学的数学成绩ξ,记该同学的成绩90<ξ≤110为事件A,记该同学的成绩80<ξ≤100为事件B,则在A事件发生的条件下B事件发生的概率P(B|A)=$\frac{27}{95}$(用分数表示)
附:X满足P(μ-σ<X≤μ+σ)=0.68,P(μ-2σ<X≤μ+2σ)=0.95,P(μ-3σ<X≤μ+3σ)=0.99.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.共享单车的出现方便了人们的出行,深受我市居民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生中按年级用分层抽样的方式随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)如表:
使用时间[0,2](2,4](4,6](6,8](8,10]
人数104025205
(Ⅰ)已知该校大一学生由2400人,求抽取的100名学生中大一学生人数;
(Ⅱ)作出这些数据的频率分布直方图;
(Ⅲ)估计该校大学生每周使用共享单车的平均时间$\overline t$(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.
(1)求证:平面CFG⊥平面ACE;
(2)在AC上是否一点H,使得EH∥平面CFG?若存在,求出CH的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某沿海四个城市A、B、C、D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,CD=250$\sqrt{6}$nmile,D位于A的北偏东75°方向.现在有一艘轮船从A出发以50nmile/h的速度向D直线航行,60min后,轮船由于天气原因收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ度,则sinθ=$\frac{{\sqrt{6}-\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加x元,对应的销量y(万份)与x(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组x与y的对应数据:
x(元)2530384552
销售y(万册)7.57.16.05.64.8
据此计算出的回归方程为$\hat y=10.0-bx$.
(i)求参数b的估计值;
(ii)若把回归方程$\hat y=10.0-bx$当作y与x的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{a}$为单位向量,$\overrightarrow{b}$=(0,2),且$\overrightarrow{a}$$•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,M为AD上的点,AE=1,AM=$\frac{1}{2}$.
(Ⅰ)求证:EM⊥BD;
(Ⅱ)设点F是棱BC上一点,若二面角A-DE-F的余弦值为$\frac{\sqrt{10}}{10}$,试确定点F在BC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的内角A,B,C成等差数列,对应边a,b,c成等比数列,那么△ABC的形状为等边三角形.

查看答案和解析>>

同步练习册答案