精英家教网 > 高中数学 > 题目详情
1.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加x元,对应的销量y(万份)与x(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组x与y的对应数据:
x(元)2530384552
销售y(万册)7.57.16.05.64.8
据此计算出的回归方程为$\hat y=10.0-bx$.
(i)求参数b的估计值;
(ii)若把回归方程$\hat y=10.0-bx$当作y与x的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

分析 (Ⅰ)求出区间中值,取值概率,即可估计平均收益率;
(Ⅱ)(i)利用公式,求参数b的估计值;
(ii)设每份保单的保费为20+x元,则销量为y=10-0.1x,则保费收入为f(x)=(20+x)(10-0.1x)万元,f(x)=200+8x-0.1x2=360-0.1(x-40)2,即可得出结论.

解答 解:(Ⅰ)区间中值依次为:0.05,0.15,0.25,0.35,0.45,0.55,
取值概率依次为:0.1,0.2,0.25,0.3,0.1,0.05,
平均收益率为0.05×0.10+0.15×0.20+0.25×0.25+0.35×0.30+0.45×0.10+0.55×0.05
=$\frac{1}{{{{10}^4}}}({50+300+625+}\right.$1050+450+275)=0.275.
(Ⅱ)(i)$\overline x=\frac{25+30+38+45+52}{5}$=$\frac{190}{5}=38$,$\overline y=\frac{7.5+7.1+6.0+5.6+4.8}{5}$=$\frac{31}{5}=6.2$
所以$b=\frac{10.0-6.2}{38}=0.10$
(ii)设每份保单的保费为20+x元,则销量为y=10-0.1x,
则保费收入为f(x)=(20+x)(10-0.1x)万元,f(x)=200+8x-0.1x2=360-0.1(x-40)2
当x=40元时,保费收入最大为360万元,
保险公司预计获利为360×0.275=99万元.

点评 本题考查回归方程,考查概率的计算,考查学生利用数学知识解决实际问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C的对边分别是a,b,c,已知$b=4\sqrt{5},c=5$,且B=2C,点D为边BC上的一点,且CD=3,则△ADC的面积为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,AC=2,A=120°,cosB=$\sqrt{3}$sinC.
(1)求边AB的长;
(2)设D是BC边上的一点,且△ACD的面积为$\frac{3\sqrt{3}}{4}$,求∠ADC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若将函数$f(x)=cos({2x+\frac{π}{6}})$的图象向左平移φ(φ>0)个单位,所得图象关于原点对称,则φ最小时,tanφ=(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为了得到函数$y=2cos({2x-\frac{π}{6}})$的图象,只需将函数y=2sin2x图象上所有的点(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知tanα=$\frac{3}{4}$,则sin2α=(  )
A.$-\frac{12}{25}$B.$\frac{12}{25}$C.$-\frac{24}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a1=$\frac{1}{2}$a2≠0,数列{an}的前n项和为Sn,且Sn+1=3Sn-2Sn-1(n≥2),设bn=$\frac{{S}_{n}}{{a}_{n}}$(n∈N*).
(1)求数列{bn}的通项公式;
(2)设cn=nbn+$\frac{n+1}{{2}^{n}}$(n∈N*),数列{cn}的前n项和为Tn,证明:T10>109.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}满足:a1=1,an+1=$\frac{a_n}{{{a_n}+2}}$(n∈N*)若${b_{n+1}}=(n-2λ)•(\frac{1}{a_n}+1)$(n∈N*),b1=-$\frac{3}{2}$λ,且数列{bn}是单调递增数列,则实数λ的取值范围是(  )
A.$λ<\frac{4}{5}$B.λ<1C.$λ<\frac{3}{2}$D.$λ<\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α是第一象限角,且sin(π-α)=$\frac{3}{5}$,则tanα=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案