精英家教网 > 高中数学 > 题目详情
9.若将函数$f(x)=cos({2x+\frac{π}{6}})$的图象向左平移φ(φ>0)个单位,所得图象关于原点对称,则φ最小时,tanφ=(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$\sqrt{3}$

分析 利用y=Asin(ωx+φ)的图象变换规律,求得φ的最小值,可得tanφ的值.

解答 解:将函数$f(x)=cos({2x+\frac{π}{6}})$的图象向左平移φ(φ>0)个单位,可得y=cos(2x+2φ+$\frac{π}{6}$)的图象;
再根据所得关于原点对称,可得2φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,∴φ的最小值为$\frac{π}{6}$,
∴tanφ=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,
故选:B.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知递增的等比数列{an}的公比为q,其前n项和Sn<0,则(  )
A.a1<0,0<q<1B.a1<0,q>1C.a1>0,0<q<1D.a1>0,q>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=3lnx-\frac{1}{2}{x^2}+x$,g(x)=3x+a.
(Ⅰ)若f(x)与g(x)相切,求a的值;
(Ⅱ)当$a=\frac{5}{2}$时,P(x1,y1)为f(x)上一点,Q(x2,y2)为g(x)上一点,求|PQ|的最小值;
(Ⅲ)?x0>0,使f(x0)>g(x0)成立,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ex-ax2,g(x)是f(x)的导函数.
(Ⅰ)求g(x)的极值;
(Ⅱ)若f(x)≥x+1在x≥0时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.
(1)求证:平面CFG⊥平面ACE;
(2)在AC上是否一点H,使得EH∥平面CFG?若存在,求出CH的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,左、右焦点分别为F1、F2,且C1与抛物线C2:y2=x的交点所在的直线经过F2
(Ⅰ)求椭圆C1的方程;
(Ⅱ)分别过F1、F2作平行直线m、n,若直线m与C1交于A,B两点,与抛物线C2无公共点,直线n与C1交于C,D两点,其中点A,D在x轴上方,求四边形AF1F2D的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加x元,对应的销量y(万份)与x(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组x与y的对应数据:
x(元)2530384552
销售y(万册)7.57.16.05.64.8
据此计算出的回归方程为$\hat y=10.0-bx$.
(i)求参数b的估计值;
(ii)若把回归方程$\hat y=10.0-bx$当作y与x的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.各项均不为零的等差数列{an}的前n项和为Sn,则$\frac{{S}_{5}}{{a}_{3}}$的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}的前项和为Sn,且${a_1}=\frac{2}{3},{a_{n+1}}-{S_n}=\frac{2}{3}$,用[x]表示不超过x的最大整数,如[-0.1]=-1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4+…+b2n-1+b2n=$\frac{{2}^{2n+1}}{3}$-n-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案