精英家教网 > 高中数学 > 题目详情
11.已知α是第一象限角,且sin(π-α)=$\frac{3}{5}$,则tanα=$\frac{3}{4}$.

分析 利用同角三角函数的基本关系的应用,诱导公式,求得tanα的值.

解答 解:∵α是第一象限角,且sin(π-α)=sinα=$\frac{3}{5}$,
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{4}{5}$,
则tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.

点评 本题主要考查同角三角函数的基本关系的应用,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加x元,对应的销量y(万份)与x(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组x与y的对应数据:
x(元)2530384552
销售y(万册)7.57.16.05.64.8
据此计算出的回归方程为$\hat y=10.0-bx$.
(i)求参数b的估计值;
(ii)若把回归方程$\hat y=10.0-bx$当作y与x的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于函数f(x)=asinx+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1)、f(-1),所得出的正确结果可能是(  )
A.2和1B.2和0C.2和-1D.2和-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}的前项和为Sn,且${a_1}=\frac{2}{3},{a_{n+1}}-{S_n}=\frac{2}{3}$,用[x]表示不超过x的最大整数,如[-0.1]=-1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4+…+b2n-1+b2n=$\frac{{2}^{2n+1}}{3}$-n-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的内角A,B,C成等差数列,对应边a,b,c成等比数列,那么△ABC的形状为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=e-x+ax(a∈R)
(1)讨论f(x)的最值;
(2)若a=0,求证:f(x)>-$\frac{1}{2}$x2+$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x0>0,使得(x0+1)${e}^{{x}_{0}}$>1”的否定是(  )
A.?x>0,总有(x+1)ex≤1B.?x≤0,总有(x+1)ex≤1
C.?x0≤0,总有(x0+1)${e}^{{x}_{0}}$≤1D.?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,y表示开业第x天参加抽奖活动的人数,得到统计表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
经过进一步统计分析,发现y与x具有线性相关关系.
(Ⅰ)根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$;
(Ⅱ)若该分店此次抽奖活动自开业始,持续10天,参加抽奖的每位顾客抽到一等奖(价值200元奖品)的概率为$\frac{1}{7}$,抽到二等奖(价值100元奖品)的概率为$\frac{2}{7}$,抽到三等奖(价值10元奖品)的概率为$\frac{4}{7}$,试估计该分店在此次抽奖活动结束时送出多少元奖品?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等差数列{an}中,若其前13项的和S13=52,则a7为(  )
A.4B.3C.6D.12

查看答案和解析>>

同步练习册答案