精英家教网 > 高中数学 > 题目详情
13.已知a1=$\frac{1}{2}$a2≠0,数列{an}的前n项和为Sn,且Sn+1=3Sn-2Sn-1(n≥2),设bn=$\frac{{S}_{n}}{{a}_{n}}$(n∈N*).
(1)求数列{bn}的通项公式;
(2)设cn=nbn+$\frac{n+1}{{2}^{n}}$(n∈N*),数列{cn}的前n项和为Tn,证明:T10>109.

分析 (1)运用数列的递推式可得n≥2时,an+1=2an,再由等比数列的通项公式和求和公式,即可得到所求数列的通项公式;
(2)求得cn=nbn+$\frac{n+1}{{2}^{n}}$=2n-$\frac{n}{{2}^{n-1}}$+$\frac{n+1}{{2}^{n}}$,运用数列的求和方法:分组求和和裂项相消求和,即可得到所求和,即可得证.

解答 解:(1)由Sn+1=3Sn-2Sn-1(n≥2),可得Sn+1-Sn=2(Sn-Sn-1),
即为n≥2时,an+1=2an
a1=$\frac{1}{2}$a2≠0,可得$\frac{{a}_{n+1}}{{a}_{n}}$=2,即数列{an}(n∈N*)是以2为公比的等比数列,
故an=a1•2n-1,Sn=$\frac{{a}_{1}(1-{2}^{n})}{1-2}$=a1•(2n-1),
则bn=$\frac{{S}_{n}}{{a}_{n}}$=$\frac{{2}^{n}-1}{{2}^{n-1}}$.
(2)证明:cn=nbn+$\frac{n+1}{{2}^{n}}$=2n-$\frac{n}{{2}^{n-1}}$+$\frac{n+1}{{2}^{n}}$,
则T10=2(1+2+…+10)-$\frac{1}{{2}^{0}}$+$\frac{2}{{2}^{1}}$-$\frac{2}{{2}^{1}}$+$\frac{3}{{2}^{2}}$+…-$\frac{10}{{2}^{9}}$+$\frac{11}{{2}^{10}}$
=2×$\frac{1}{2}$×10×11-1+$\frac{11}{{2}^{10}}$=109+$\frac{11}{{2}^{10}}$>109.

点评 本题考查数列的通项公式的求法,注意运用数列递推式,考查等比数列的通项公式和求和公式的运用,以及数列的求和方法:分组求和与裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图所示,在三棱柱ABC-A1B1C1中,已知AC⊥平面BCC1B1,AC=BC=1,BB1=2,∠B1BC=60°.
(1)证明:B1C⊥AB;
(2)已知点E在棱BB1上,二面角A-EC1-C为45°,求$\frac{BE}{{B{B_1}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.
(1)求证:平面CFG⊥平面ACE;
(2)在AC上是否一点H,使得EH∥平面CFG?若存在,求出CH的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加x元,对应的销量y(万份)与x(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组x与y的对应数据:
x(元)2530384552
销售y(万册)7.57.16.05.64.8
据此计算出的回归方程为$\hat y=10.0-bx$.
(i)求参数b的估计值;
(ii)若把回归方程$\hat y=10.0-bx$当作y与x的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{a}$为单位向量,$\overrightarrow{b}$=(0,2),且$\overrightarrow{a}$$•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.各项均不为零的等差数列{an}的前n项和为Sn,则$\frac{{S}_{5}}{{a}_{3}}$的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,M为AD上的点,AE=1,AM=$\frac{1}{2}$.
(Ⅰ)求证:EM⊥BD;
(Ⅱ)设点F是棱BC上一点,若二面角A-DE-F的余弦值为$\frac{\sqrt{10}}{10}$,试确定点F在BC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于函数f(x)=asinx+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1)、f(-1),所得出的正确结果可能是(  )
A.2和1B.2和0C.2和-1D.2和-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x0>0,使得(x0+1)${e}^{{x}_{0}}$>1”的否定是(  )
A.?x>0,总有(x+1)ex≤1B.?x≤0,总有(x+1)ex≤1
C.?x0≤0,总有(x0+1)${e}^{{x}_{0}}$≤1D.?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1

查看答案和解析>>

同步练习册答案