精英家教网 > 高中数学 > 题目详情
1.下列几何体各顶点都在同一球面上,求此球表面积.
(1)直三棱柱,所有棱长都是a;
(2)所有棱长都是$\sqrt{2}$的四面体;
(3)直三棱柱,AB=AC=AA1=2,∠BAC=120°.

分析 分别求出球的半径,再利用球表面积公式,即可求出球表面积.

解答 解:设球的半径为R,则
(1)球心到底面的距离为$\frac{a}{2}$,由勾股定理可得R2=($\frac{a}{2}$)2+($\frac{\sqrt{3}}{3}$a)2=$\frac{7}{12}$a2,∴S=4πR2=$\frac{7}{3}$a2
(2)所有棱长都是$\sqrt{2}$的四面体,补成正方体的棱长为1,对角线长为$\sqrt{3}$,∴球的半径为R=$\frac{\sqrt{3}}{2}$,∴S=4πR2=3π;
(3)球心到底面的距离为1,△ABC中,BC=$\sqrt{4+4-2×2×2×(-\frac{1}{2})}$=2,∴2r=$\frac{2}{\frac{\sqrt{3}}{2}}$,∴r=$\frac{2}{\sqrt{3}}$,由勾股定理可得R2=($\frac{2}{\sqrt{3}}$)2+12=$\frac{7}{3}$,∴S=4πR2=$\frac{28}{3}$a2

点评 本题考查求球表面积,考查学生的计算能力,正确求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.对于0.43和log40.3,下列说法正确的是(  )
A.0.43<log40.3B.0.43>log40.3C.0.43=log40.3D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=|log${\;}_{\frac{1}{2}}$x|的定义域为[$\frac{1}{2}$,m],值域为[0,1],则m的取值范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.判断下列函数的奇偶性.
(1)f(x)=lg$\frac{1-x}{1+x}$;
(2)f(x)=ln($\sqrt{1+{x}^{2}}$-x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.根式$\frac{1}{\root{3}{{3}^{2}}}$用分数指数幂表示为${3}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线y=kx+2与圆x2+(y-1)2=4的位置关系是(  )
A.相离B.相切C.相交D.与k的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设A和B是两个集合,定义集合A*B={x|x∈A∪B,且x∉A∩B},如果集合P={x||x-2|<1},集合Q={x|x2-4x-12<0},则P*Q={x|-2<x≤1或3≤x<6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数D(x)=$\left\{{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}}$,有下列四个结论:
①D(x)的值域为{0,1};②D(x)是偶函数;③D(x)不是周期函数;④D(x)不是单调函数;其中正确的是①②④(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知tan(θ-π)=2,则sinθcosθ=$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案