精英家教网 > 高中数学 > 题目详情
12.求经过直线l1:3x-4y-1=0与直线l2:x+2y+8=0的交点M,且满足下列条件的直线l的方程:
(1)与直线2x+y+5=0平行;     
(2)与直线2x+y+5=0垂直.

分析 联立$\left\{\begin{array}{l}{3x-4y-1=0}\\{x+2y+8=0}\end{array}\right.$,解得交点M,
(1)由平行关系可得直线的斜率,进而可得点斜式方程,化为一般式即可;
(2)由垂直关系可得直线的斜率,进而可得点斜式方程,化为一般式即可.

解答 解:联立$\left\{\begin{array}{l}{3x-4y-1=0}\\{x+2y+8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-3}\\{y=-\frac{5}{2}}\end{array}\right.$,可得交点M(-3,-$\frac{5}{2}$).
(1)若直线平行于直线2x+y+5=0,则斜率为-2,
故可得方程为$y+\frac{5}{2}=-2(x+3)$,即4x+2y+17=0;
(2)若直线垂直于直线2x+y+5=0,则斜率为$\frac{1}{2}$,
故可得方程为$y+\frac{5}{2}=\frac{1}{2}(x+3)$,即x-2y-2=0.

点评 本题考查了直线的交点、相互平行垂直的直线与斜率之间的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值(  )
A.越大,“X与Y有关系”成立的可能性越大
B.越大,“X与Y有关系”成立的可能性越小
C.越小,“X与Y有关系”成立的可能性越大
D.与“X与Y有关系”成立的可能性无关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$,x∈R.
(Ⅰ) 求函数f(x)的最小值和最小正周期;
(2)求函数f(x),x∈[0,π]单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设cn=n(3-bn),数列{cn}的前n项和为Tn,求证:Tn<8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.公比不为1的等比数列{an}的前n项和为Sn,且-2a1,-$\frac{1}{2}{a_2},{a_3}$成等差数列,若a1=1,则S4=(  )
A.-5B.0C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某单位拟安排6位员工在今年5月28日至30日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值28日,乙不值30日,则不同的安排方法共有(  )
A.30种B.36种C.42种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=logax(a>0,a≠1),且f(4)-f(2)=1.
(1)若f(3m-3)<f(2m+1),求实数m的取值范围;
(2)求使$f(x+\frac{2}{x})={log_2}3$成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=$\frac{4-3i}{6+8i}$(i是虚数单位),则|z|=(  )
A.$\frac{1}{2}$B.1C.$\frac{7}{48}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若全集U、集合A、集合B及其关系用韦恩图表示如图所示,则图中阴影表示的集合为(  )
A.U(A∩B)B.U(A∪B)C.A∩(∁UB)D.(∁UA)∩B

查看答案和解析>>

同步练习册答案