精英家教网 > 高中数学 > 题目详情
18.下列函数中,周期为π的奇函数是(  )
A.y=sin2xB.y=tan2xC.y=sin2x+cos2xD.y=sinxcosx

分析 根据题意,依次分析选项,求出函数的周期与奇偶性,分析即可得答案.

解答 解:根据题意,依次分析选项:
对于A、y=sin2x=$\frac{1-cos2x}{2}$,为偶函数,周期为$\frac{2π}{2}$=π,不符合题意;
对于B、y=tan2x,为奇函数,其周期为$\frac{π}{2}$,不符合题意;
对于C、y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),为非奇非偶函数,不符合题意;
对于D、y=sinxcosx=$\frac{1}{2}$sin2x,为奇函数,且其周期为$\frac{2π}{2}$=π,符合题意;
故选:D.

点评 本题考查三角函数的周期的计算,关键是正确将三角函数化简变形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-{π^0}+\frac{37}{48}$=$\frac{807}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(Ⅰ)比较(x+1)(x-3)与(x+2)(x-4)的大小.
(Ⅱ)一段长为36m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大.最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商场对甲、乙两种品牌的商品进行为期100天的营销活动,为调查这100天的日销售情况,随机抽取了10天的日销售量(单位:件)作为样本,样本数据的茎叶图如图.若日销量不低于50件,则称当日为“畅销日”.
(Ⅰ)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;
(Ⅱ)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的2×2列联表,并判断是否有99%的把握认为品牌与“畅销日”天数有关.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828
畅销日天数非畅销日天数合计
甲品牌5050100
乙品牌3070100
合计80120200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足a1=$\frac{3}{2}$,an+1=a${\;}_{n}^{2}$-an+1(n∈N+),则m=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2008}}$的整数部分是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$与x=1时都取得极值
(1)求函数y=f(x)在点M(-1,f(-1))处的切线方程
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α,β是一个钝角三角形的两个锐角,下列四个不等式中的正确的个数是(  )
(1)cosα>sinβ
(2)$sinα+sinβ<\sqrt{2}$
(3)cosα+cosβ>1
(4)$\frac{1}{2}tan({α+β})<tan\frac{α+β}{2}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列四个结论:
(1)两条直线都和同一个平面平行,则这两条直线平行;
(2)两条直线没有公共点,则这两条直线平行;
(3)两条直线都和第三条直线垂直,则这两条直线平行;
(4)一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.
其中错误的结论序号是(1)(2)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线$y=\frac{{2\sqrt{3}}}{3}x$和椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$交于不同的两点M,N,若M,N在x轴上的射影恰好为椭圆的两个焦点,则椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

同步练习册答案