分析 由三角恒等变换化简y,由此得到递增区间,结合x的范围即可得到答案.
解答 解:∵y=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$,
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-1,
=sin(2x-$\frac{π}{6}$)-1,
当-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,得:kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,(k∈Z),
∵x∈[0,$\frac{π}{2}$],
∴y的单调增区间是x∈$[0,\frac{π}{3}]$.
点评 本题考查三角恒等变换化简.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com