精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列判断正确的是(  )
A.a<0,b<0,c<0B.a>0,b>0,c<0C.a>0,b<0,c>0D.a>0,b>0,c>0

分析 由已知中函数f(x)=ax3+bx2+cx+d的图象,根据其与y轴交点的位置,可以判断d的符号,进而根据其单调性和极值点的位置,可以判断出其中导函数图象的开口方向(可判断a的符号)及对应函数两个根的情况,结合韦达定理,可分析出b,c的符号,进而得到答案.

解答 解:∵函数f(x)=ax3+bx2+cx+d的图象与y轴交点的纵坐标为正,故d>0;
∵f(x)=ax3+bx2+cx+d的图象有两个递增区间,有一个递减区间,
∴f′(x)=3ax2+2bx+c的图象开口方向朝上,且于x轴有两个交点,故a>0,
又∵f(x)=ax3+bx2+cx+d的图象的极小值点和极大值点在y轴左侧,且极小值点离y轴近,
∴f′(x)=3ax2+2bx+c=0的两根x1,x2满足,
x1+x2<0,则b>0,x1•x2>0,则c>0,
综上a>0,b>0,c>0,d>0,
故选:D.

点评 本题考查的知识点是函数的图象与图象变化,其中根据图象的形状分析其导函数的性质是解答本题的关键,同时由于本题涉及到导数,二次函数的图象和性质,函数的单调性,函数取极值的条件等诸多难点,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源:2017届广东华南师大附中高三综合测试一数学(文)试卷(解析版) 题型:选择题

已知,则的大小关系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=cosxcos(x+$\frac{π}{3}$),求函数f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的奇函数f(x)的导函数为f′(x),当x<0时,f(x)满足2f(x)+xf′(x)<xf(x),则f(x)在R上的零点的个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知an=$\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}$,则Sn=1-$\frac{1}{\sqrt{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各函数的最值.
(1)y=2x+$\sqrt{1-2x}$;
(2)y=x+4+$\sqrt{9-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x=5-4a+a2,a∈R},B={x|x=4b2+4b+2,b∈R},判定集合A与B的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)与直线y=2x有交点,则双曲线离心率的取值范围是(  )
A.($\sqrt{5}$,+∞)B.[$\sqrt{5}$,+∞)C.(1,$\sqrt{5}$)∪($\sqrt{5}$,+∞)D.(1,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=3${\;}^{\frac{1}{x}-1}$的定义域为{x|x≠0},值域为{y|y>0且y≠$\frac{1}{3}$}.

查看答案和解析>>

同步练习册答案