【题目】已知函数(其中是常数,,),函数的导函数为,且.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)当时,若函数在区间上的最大值为,试求的值.
科目:高中数学 来源: 题型:
【题目】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标x的值小于1.7的概率;
(2)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
(3)若指标x小于1.7且指标y大于60就说总生理指标正常(例如图中B、D两名患者的总生理指标正常),根据上图,完成下面列联表,并判断能否有95%的把握认为总生理指标正常与是否服药有关,说明理由;
总生理指标正常 | 总生理指标不正常 | 总计 | |
服药 | |||
不服药 | |||
总计 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前n项和为,对任意的正整数n,都有成立,记(),
(1)求数列的通项公式;
(2)记(),设数列的前n和为,求证:对任意正整数n,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足 (),数列满足 (),且
(1)证明数列为等差数列,并求数列和的通项公式;
(2)若,求数列的前项和;
(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥的底面ABCD是边长为2的菱形,侧面PAD是正三角形,,E为AD的中点,二面角为.
证明:平面PBE;
求点P到平面ABCD的距离;
求直线BC与平面PAB所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com