精英家教网 > 高中数学 > 题目详情
7.已知(a+1)x-1-lnx≤0对于任意x∈[$\frac{1}{2}$,2]恒成立,则a的最大值为1-2ln2.

分析 问题转化为a( $\frac{1+lnx}{x}$-1)min对于任意x∈[$\frac{1}{2}$,2]恒成立,设f(x)=$\frac{1+lnx}{x}$-1,求出函数f(x)的最小值即可求出a的最大值.

解答 解:(a+1)x-1-lnx≤0对于任意x∈[$\frac{1}{2}$,2]恒成立
?a≤$\frac{1+lnx}{x}$-1对于任意x∈[$\frac{1}{2}$,2]恒成立
?a≤( $\frac{1+lnx}{x}$-1)min对于任意x∈[$\frac{1}{2}$,2]恒成立
设f(x)=$\frac{1+lnx}{x}$-1,x∈[$\frac{1}{2}$,2],则f′(x)=$\frac{-lnx}{{x}^{2}}$,
令f′(x)>0,解得:$\frac{1}{2}$≤x<1,令f′(x)>0,解得:1<x≤2,
∴f(x)在[$\frac{1}{2}$,1)递增,在(1,2]递减,
∴f($\frac{1}{2}$)或f(2)最小,
而f($\frac{1}{2}$)=1-2ln2,f(2)=$\frac{1}{2}$ln2-$\frac{1}{2}$,
∴f($\frac{1}{2}$)<f(2),
∴a的最大值是1-2ln2,
故答案为:1-2ln2.

点评 本题考查函数恒成立问题,着重考查构造函数思想、等价转化思想与导数法求极值的综合应用,求得f(x)的最小值是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知m∈[0,3],则函数f(x)=2|x|-m存在零点的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-1)2(x-a)(a∈R)在x=$\frac{5}{3}$处取得极值.
(1)求实数a的值;
(2)求函数y=f(x)在闭区间[0,3]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx,g(x)=x-1.
(I)当x≠1时,证明:f(x)<g(x)
(II)证明不等式:ln2+$\frac{ln3}{2}$+…+$\frac{ln(n+1)}{n}$<n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3+3x2-9x+a.
(1)求f(x)的单调递增区间;
(2)若f(x)在区间[-2,2]上的最小值为20,求它在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=$\frac{1}{3}$x3-x在(2m,1-m)上有最大值,则实数m的取值范围是[-1,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx-$\frac{1}{2}a$x2+a.
(Ⅰ)当a=1时,判断函数f(x)的单调性;
(Ⅱ)若函数F(x)=f(x)-x有两个不同的极值点x1,x2
(i)求实数a的取值范围;
(ii)求证:f(x2)>$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{OM}$=(-2,3),$\overrightarrow{ON}$=(-1,-5),则$\frac{1}{2}$$\overrightarrow{MN}$=($\frac{1}{2}$,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,A(1,$\frac{\sqrt{2}}{2}$)为椭圆上一点,AF交y轴于点M,且M为AF的中点.
(I)求椭圆C的方程;
(II)直线l与椭圆C有且只有一个公共点A,平行于OA的直线交l于P,交椭圆C于不同的两点D,E,问是否存在常数λ,使得|PA|2=λ|PD|•|PE|,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案