精英家教网 > 高中数学 > 题目详情
已知曲线C的参数方程为
x=2cosθ
y=3sinθ
(θ为参数)在同一平面直角坐标系中,将曲线C上的点按坐标变换
x′=
1
2
x
y′=
1
3
y
得到曲线C′.
(1)求曲线C′的普通方程.
(2)若点A在曲线C′上,点B(3,0).当点A在曲线C′上运动时,求AB中点P的运动轨迹方程.
考点:参数方程化成普通方程
专题:选作题,坐标系和参数方程
分析:(1)利用坐标转移,代入参数方程,消去参数即可求曲线C′的普通方程;
(2)设P(x,y),A(x0,y0),点A在曲线C′上,点B(3,0),点A在曲线C′上,列出方程组,即可求AB中点P的轨迹方程.
解答: 解:(1)将
x=2cosθ
y=3sinθ
代入
x′=
1
2
x
y′=
1
3
y
,得C'的参数方程为
x=cosθ
y=sinθ

∴曲线C'的普通方程为x2+y2=1.                  …(5分)
(2)设P(x,y),A(x0,y0),又B(3,0),且AB中点为P
∴有:
x0=2x-3
y0=2y

又点A在曲线C'上,∴代入C'的普通方程得(2x-3)2+(2y)2=1
∴动点P的轨迹方程为(x-
3
2
2+y2=
1
4
.            …(10分)
点评:本题考查参数方程和直角坐标的互化,利用直角坐标方程与参数方程间的关系,考查代入法的运用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-3x+3)ex,x∈[-2,a],a>-2,其中e是自然对数的底数.
(1)若a<1,求函数y=f(x)的单调区间;
(2)求证:f(a)>
13
e2

(3)对于定义域为D的函数y=g(x),如果存在区间[m,n]⊆D,使得x∈[m,n]时,y=g(x)的值域是[m,n],则称[m,n]是该函数y=g(x)的“保值区间”.设h(x)=f(x)+(x-2)ex,x∈(1,+∞),问函数y=h(x)是否存在“保值区间”?若存在,请求出一个“保值区间”; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机写出两个小于1的正数x,y,它们与1一起形成一个三元组(x,y,1),求这个三元组正好是钝角三角形的三个边的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥S-ABC的底面边长为4,高为3
(1)求正三棱锥S-ABC外接球半径;
(2)在正三棱锥内任取一点P,求点P满足VP-ABC
1
3
VS-ABC的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=
2
,设
AB
=
a
AD
=
b
AA1
=
c

(1)试用
a
b
c
表示向量
AC
BD1

(2)若∠A1AD=∠A1AB=120°,求直线AC与BD1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B为相距2km的两个工厂,以AB的中点O为圆心,半径为2km画圆弧.MN为圆弧上两点,且MA⊥AB,NB⊥AB,在圆弧MN上一点P处建一座学校.学校P受工厂A的噪音影响度与AP的平方成反比,比例系数为1,学校P受工厂B的噪音影响度与BP的平方成反比,比例系数为4.学校P受两工厂的噪音影响度之和为y,且设AP=xkm.
(1)求y=f(x),并求其定义域;
(2)当AP为多少时,总噪音影响度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

某射手进行射击训练,假设每次射击击中目标的概率为
3
5
,且每次射击的结果互不影响,已知射手射击了5次,求:
(1)其中只在第一、三、五次击中目标的概率;
(2)其中恰有3次击中目标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=
1
3
x3-(4m-1)x2+(15m2-2m-7)x+2在x∈(-∞,+∞)上是增函数,则m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

-210°化为弧度为
 

查看答案和解析>>

同步练习册答案