精英家教网 > 高中数学 > 题目详情
18.设{an}的公比不为1的等比数列,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)若a1=-2,求数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和Sn

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用等比数列的前n项和公式即可得出.

解答 解:(1)设数列{an}的公比为q(q≠0,q≠1),
由a5,a3,a4成等差数列,得到2a3=a5+a4,即$2{a_3}={a_3}{q^2}+{a_3}q$,
由a3≠0,q≠0得q2+q-2=0,
解得q=-2或q=1(舍去),
∴q=-2.
(2)依题意易得$\left\{{\frac{1}{a_n}}\right\}$是以$\frac{1}{a_1}=-\frac{1}{2}$为首项,$-\frac{1}{2}$为公比的等比数列,
∴${S_n}=\frac{{-\frac{1}{2}[{1-{{({-\frac{1}{2}})}^n}}]}}{{1-({-\frac{1}{2}})}}=-\frac{{1-{{({-\frac{1}{2}})}^n}}}{3}$=$\frac{{{{({-\frac{1}{2}})}^n}-1}}{3}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在直角坐标系中,正方形ABCD的四个顶点分别为A(0,0),B(1,0),C(1,1),D(0,1).
(Ⅰ)已知函数$f(x)=\frac{2}{9x}$(其中$x∈(\frac{1}{3},\frac{2}{3})$),过f(x)图象是任意一点R的切线l将正方形ABCD截成两部分,设R点的横坐标为t,S(t)表示正方形ABCD被切线l所截的左下部分的面积,求S(t)的解析式;
(Ⅱ) 试问S(t)在定义域上是否存在最大值和最小值?若存在,求出S(t)的最大值和最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某班主任对全班50名学生进行了作业量多少的调查,数据如下:
认为作业多认为作业不多
喜欢玩手机189
不喜欢玩手机716
则认为喜欢玩手机与认为作业多少有关系的把握大约为95%.
附:x2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
当x2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B是没有关联的;
当x2>2.706时,有90%的把握判定变量A,B有关联;
当x2>3.841时,有95%的把握判定变量A,B有关联;
当x2>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足a1=0,an+1=$\frac{{{a_n}-2}}{{\frac{5}{4}{a_n}-2}}$,则a2015=(  )
A.0B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是等差数列,若a3+a11=30,a4=9.
(1)求an
(2)若数列{an}的前n项和为Sn,且bn=$\frac{1}{S_n}$,证明:b1+b2+…+bn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:选择题

函数是定义在实数集上的奇函数,且当时,成立,若,则大小关系( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个函数中,在区间(0,$\frac{1}{4}$)上为减函数的是(  )
A.y=x($\frac{1}{2}$)xB.y=-($\frac{1}{2}$)xC.y=xlog2xD.y=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,程序框图(算法流程图)的输出值x=12.

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:选择题

函数的零点所在区间是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案