精英家教网 > 高中数学 > 题目详情
一个圆台的上、下底面积是πcm2和49πcm2,一个平行与底面的截面积为25πcm2,则这个截面与上、下底面的距离之比为(  )
A、2:1
B、3:1
C、
2
:1
D、
3
:1
考点:旋转体(圆柱、圆锥、圆台)
专题:空间位置关系与距离
分析:根据圆台数学底面面积比,求出上下底面半径的比,推出截面与上下底面半径的比,求出圆台扩展为圆锥的高的比,然后求出截面分圆台上下部分的距离之比.
解答: 解:圆台上下两底面的半径比为1:7,截面与底面半径比为5:7,圆台扩展为圆锥,轴截面如图:

所以h2+h3=6h1,h2=4h1
所以h3=2h1
这个截面与上、下底面的距离之比为:2:1
故选A
点评:本题是基础题,考查圆台有关面积的计算问题,注意面积之比与相似比的平方的关系,轴面积的应用,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个不相等的实数a、b满足以下关系式:a2sinθ+acosθ-
π
4
=0,b2sinθ+bcosθ-
π
4
=0,则连接A(a2,a)、B(b2,b)两点的直线与圆x2+y2=1的位置关是(  )
A、相离B、相切
C、相交D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
sinx-1
cosx-2
的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=
1
3
,则tanα+
1
tanα
=(  )
A、
8
9
B、
7
3
C、
9
4
D、
11
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
2
x2-3x-
5
2
的值域是(  )
A、{y|y≥-
5
2
}
B、{y|y≤-
5
2
}
C、{y|y≥2}
D、{y|y≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长均相等的正三棱柱ABC-A1B1C1中,D为BC的中点.
(1)求证:A1B∥平面AC1D;
(2)求C1C与平面AC1D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
y2
a2
+
x2
2
=1(a>
2
)的离心率
2
2
,其两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足
PF1
PF2
=1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求椭圆C的方程;
(2)求P点坐标;
(3)当直线PB的斜率为
2
2
时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
e2
1
3
x
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosωx•(cosωx+
3
sinwx),其中ω>0,又函数f(x)的图象的任意两中心对称点间的最小距离为
2

(1)求ω的值;
(2)设α是第一象限角,且f(
2
+
π
2
)=
23
26
,求
sin(α+
π
4
)
cos(4π+2α)
的值.

查看答案和解析>>

同步练习册答案