| A. | 有极大值,无极小值 | B. | 有极小值,无极大值 | ||
| C. | 既有极大值,又有极小值 | D. | 既无极大值,也无极小值 |
分析 由xf′(x)-f(x)=xlnx,得到${[\frac{f(x)}{x}]}^{′}$=$\frac{lnx}{x}$,求出$\frac{lnx}{x}$的原函数,得到f(x)=$\frac{{x(lnx)}^{2}}{2}$+cx,由f($\frac{1}{e}$)=$\frac{1}{e}$,解出c的值,从而得到f(x)=$\frac{{x(lnx)}^{2}}{2}$+$\frac{1}{2}$x,通过求导判断函数f(x)的单调性,进而判断函数的极值即可.
解答 解:∵xf′(x)-f(x)=xlnx,
∴$\frac{xf′(x)-f(x)}{{x}^{2}}$=$\frac{lnx}{x}$,
∴${[\frac{f(x)}{x}]}^{′}$=$\frac{lnx}{x}$,
而${[\frac{{(lnx)}^{2}}{2}]}^{′}$=$\frac{lnx}{x}$,
∴$\frac{f(x)}{x}$=$\frac{{(lnx)}^{2}}{2}$+c,
∴f(x)=$\frac{{x(lnx)}^{2}}{2}$+cx,
由f($\frac{1}{e}$)=$\frac{1}{e}$,解得c=$\frac{1}{2}$,
∴f(x)=$\frac{{x(lnx)}^{2}}{2}$+$\frac{1}{2}$x,
∴f′(x)=$\frac{1}{2}$(1+lnx)2≥0,
f(x)在(0,+∞)单调递增,
故函数f(x)无极值,
故选:D.
点评 本题考查了函数的单调性、极值问题,考查导数的应用,本题求出$\frac{lnx}{x}$的原函数,得到f(x)=$\frac{{x(lnx)}^{2}}{2}$+cx,求出f(x)的表达式是解题的关键,本题是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{2}$] | B. | (1,2] | C. | [$\sqrt{2}$,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\sqrt{2}$x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com