精英家教网 > 高中数学 > 题目详情
4.已知抛物线C:y2=2px(p>0)的内接等边三角形AOB的面积为$3\sqrt{3}$(其中O为坐标原点).
(1)试求抛物线C的方程;
(2)已知点M(1,1),P,Q两点在抛物线C上,△MPQ是以点M为直角顶点的直角三角形,求证:直线PQ恒过定点.

分析 (1)设A(xA,yA),B(xB,yB),由|OA|=|OB|,可得${x}_{A}^{2}$+2pxA=${x}_{B}^{2}$+2pxB,化简可得:点A,B关于x轴对称.因此AB⊥x轴,且∠AOx=30°.可得yA=2$\sqrt{3}$p,再利用等边三角形的面积计算公式即可得出.
(2)由题意可设直线PQ的方程为:x=my+a,P(x1,y1),Q(x2,y2).与抛物线方程联立化为:y2-my-a=0,利用∠PMQ=90°,可得$\overrightarrow{MP}•\overrightarrow{MQ}$=0利用根与系数的关系可得$a-\frac{3}{2}$=m+$\frac{1}{2}$,或$a-\frac{3}{2}$=-(m+$\frac{1}{2}$),进而得出结论.

解答 (1)解:设A(xA,yA),B(xB,yB),
∵|OA|=|OB|,∴${x}_{A}^{2}$+2pxA=${x}_{B}^{2}$+2pxB,化为(xA-xB)(xA+xB+2p)=0,
又xA,xB≥0,∴xA+xB+2p>0,
∴xA=xB,|yA|=|yB|,因此点A,B关于x轴对称.
∴AB⊥x轴,且∠AOx=30°.
∴$\frac{{y}_{A}}{{x}_{A}}$=tan30°=$\frac{\sqrt{3}}{3}$,又${y}_{A}^{2}$=2pxA
∴yA=2$\sqrt{3}$p,∴|AB|=2yA=4$\sqrt{3}$p.
∴S△AOB=$\frac{\sqrt{3}}{4}×(4\sqrt{3}p)^{2}$=3$\sqrt{3}$,解得p=$\frac{1}{2}$.
∴抛物线C的方程为y2=x.
(2)证明:由题意可设直线PQ的方程为:x=my+a,P(x1,y1),Q(x2,y2).
联立$\left\{\begin{array}{l}{x=my+a}\\{{y}^{2}=x}\end{array}\right.$,化为:y2-my-a=0,△>0,∴y1+y2=m,y1y2=-a.
∵∠PMQ=90°,∴$\overrightarrow{MP}•\overrightarrow{MQ}$=0,∴(x1-1)(x2-1)+(y1-1)(y2-1)=0,化为:x1x2-(x1+x2)+y1y2-(y1+y2)+2=0,
∴$({y}_{1}{y}_{2})^{2}$-$({y}_{1}+{y}_{2})^{2}$+3y1y2-(y1+y2)+2=0,
∴a2-m2-3a-m+2=0,配方为$(a-\frac{3}{2})^{2}$=$(m+\frac{1}{2})^{2}$,
∴$a-\frac{3}{2}$=m+$\frac{1}{2}$,或$a-\frac{3}{2}$=-(m+$\frac{1}{2}$),
当$a-\frac{3}{2}$=m+$\frac{1}{2}$时,a=m+2,直线PQ的方程化为:x=m(y+1)+2,直线PQ经过定点H(2,-1).
当$a-\frac{3}{2}$=-(m+$\frac{1}{2}$)时,直线PQ的方程化为:x=m(y-1)+1,直线PQ经过定点H(1,1),舍去.
综上可得:直线PQ经过定点H(2,-1).

点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、等边三角形的性质、向量垂直与数量积的关系、一元二次方程的根与系数的关系、直线经过定点问题,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-bx2+4x(b∈R)在x=2处取得极值.
(Ⅰ)求b的值;
(Ⅱ)求f(x)在区间[0,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\frac{1}{2}$sin2x+acosx在(0,π)上是增函数,则实数a的取值范围为(  )
A.[-1,+∞)B.(-∞,-1]C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个几何体的三视图如图所示,它的外接球的表面积为32π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知动点P在抛物线x2=2y上,过点P作x轴的垂线,垂足为H,动点Q满足$\overrightarrow{PQ}$=$\frac{1}{2}$$\overrightarrow{PH}$.
(1)求动点Q的轨迹E的方程;
(2)点M(-4,4),过点N(4,5)且斜率为k的直线交轨迹E于A、B两点,设直线MA、MB的斜率分别为k1、k2,求k1•k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx,f($\frac{1}{e}$)=$\frac{1}{e}$,则f(x)(  )
A.有极大值,无极小值B.有极小值,无极大值
C.既有极大值,又有极小值D.既无极大值,也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一条斜率为1的直线与曲线:y=ex和曲线:y2=4x分别相切于不同的两点,则这两点间的距离等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{1}{{2-{a_n}}}(n∈{N^*})$
(1)求a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A(-2,0),B(2,0),|$\overrightarrow{AP}$|=2,D为线段BP的中点.
(1)求点D的轨迹E的方程;
(2)抛物线C以坐标原点为顶点,以轨迹E与x轴正半轴的交点F为焦点,过点B的直线与抛物线C交于M,N两点,试判断坐标原点与以MN为直径的圆的位置关系.

查看答案和解析>>

同步练习册答案